Simulating or prescribing the influence of tides on the Amundsen Sea ice shelves
International audience The representation of tides in regional ocean simulations of the Amundsen Sea enhances ice-shelf melting, with weakest effects for Pine Island and Thwaites (< +10%) and strongest effects for Dotson, Cosgrove and Abbot (> +30%). Tides increase vertical mixing throughout t...
Published in: | Ocean Modelling |
---|---|
Main Authors: | , , , , , , |
Other Authors: | , , , , , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2019
|
Subjects: | |
Online Access: | https://hal.science/hal-03334733 https://hal.science/hal-03334733/document https://hal.science/hal-03334733/file/jourdain_OceMod_2018_revised_2.pdf https://doi.org/10.1016/j.ocemod.2018.11.001 |
id |
ftepunivpsaclay:oai:HAL:hal-03334733v1 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
École Polytechnique, Université Paris-Saclay: HAL |
op_collection_id |
ftepunivpsaclay |
language |
English |
topic |
Pine Island Thwaites NEMO ice shelf cavity ice shelf melt tides Amundsen Sea [SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography [SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology |
spellingShingle |
Pine Island Thwaites NEMO ice shelf cavity ice shelf melt tides Amundsen Sea [SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography [SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology Jourdain, Nicolas, C Molines, Jean-Marc Le Sommer, Julien Mathiot, Pierre Chanut, Jérôme de Lavergne, Casimir Madec, Gurvan Simulating or prescribing the influence of tides on the Amundsen Sea ice shelves |
topic_facet |
Pine Island Thwaites NEMO ice shelf cavity ice shelf melt tides Amundsen Sea [SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography [SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology |
description |
International audience The representation of tides in regional ocean simulations of the Amundsen Sea enhances ice-shelf melting, with weakest effects for Pine Island and Thwaites (< +10%) and strongest effects for Dotson, Cosgrove and Abbot (> +30%). Tides increase vertical mixing throughout the water column along the continental shelf break. Diurnal tides induce topographically trapped vorticity waves along the continental shelf break, likely underpinning the tidal rectification (residual circulation) simulated in the Dotson-Getz Trough. However, the primary effect by which tides affect ice-shelf melting is the increase of ice/ocean exchanges, rather than the modification of water masses on the continental shelf. Tide-induced velocities strengthen turbulent heat fluxes at the ice/ocean interface, thereby increasing melt rates. Approximately a third of this effect is counterbalanced by the resulting release of cold melt water that reduces melt downstream along the meltwater flow. The relatively weak tideinduced melting underneath Pine Island and Thwaites could be partly related to their particularly thick water column, which limits the presence of quarter wavelength tidal resonance. No sensitivity to the position of Pine Island and Thwaites with respect to the M2 critical latitude is found. We refine and evaluate existing methodologies to prescribe the effect of tides on ice-shelf melt rates in ocean models that do not explicitely include tidal forcing. The best results are obtained by prescribing spatially-dependent tidal top-boundary-layer velocities in the melt equations. These velocities can be approximated as a linear function of existing barotropic tidal solutions. A correction factor needs to be applied to account for the additional melt-induced circulation associated with tides and to reproduce the relative importance of dynamical and thermodynamical processes. |
author2 |
Institut des Géosciences de l’Environnement (IGE) Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ) United Kingdom Met Office Exeter Mercator Océan Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Service hydrographique et océanographique de la Marine-Centre National de la Recherche Scientifique (CNRS)-Météo-France Nucleus for European Modeling of the Ocean (NEMO R&D ) Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN) Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)) École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité) ANR-15-CE01-0005,TROIS-AS,Vers un système de modélisation régionale océan / calotte / atmosphère(2015) ANR-10-LABX-0056,OSUG@2020,Innovative strategies for observing and modelling natural systems(2010) |
format |
Article in Journal/Newspaper |
author |
Jourdain, Nicolas, C Molines, Jean-Marc Le Sommer, Julien Mathiot, Pierre Chanut, Jérôme de Lavergne, Casimir Madec, Gurvan |
author_facet |
Jourdain, Nicolas, C Molines, Jean-Marc Le Sommer, Julien Mathiot, Pierre Chanut, Jérôme de Lavergne, Casimir Madec, Gurvan |
author_sort |
Jourdain, Nicolas, C |
title |
Simulating or prescribing the influence of tides on the Amundsen Sea ice shelves |
title_short |
Simulating or prescribing the influence of tides on the Amundsen Sea ice shelves |
title_full |
Simulating or prescribing the influence of tides on the Amundsen Sea ice shelves |
title_fullStr |
Simulating or prescribing the influence of tides on the Amundsen Sea ice shelves |
title_full_unstemmed |
Simulating or prescribing the influence of tides on the Amundsen Sea ice shelves |
title_sort |
simulating or prescribing the influence of tides on the amundsen sea ice shelves |
publisher |
HAL CCSD |
publishDate |
2019 |
url |
https://hal.science/hal-03334733 https://hal.science/hal-03334733/document https://hal.science/hal-03334733/file/jourdain_OceMod_2018_revised_2.pdf https://doi.org/10.1016/j.ocemod.2018.11.001 |
long_lat |
ENVELOPE(-145.217,-145.217,-76.550,-76.550) ENVELOPE(-114.775,-114.775,-73.231,-73.231) |
geographic |
Amundsen Sea Getz Dotson-Getz Trough |
geographic_facet |
Amundsen Sea Getz Dotson-Getz Trough |
genre |
Amundsen Sea Ice Shelf Ice Shelves Sea ice |
genre_facet |
Amundsen Sea Ice Shelf Ice Shelves Sea ice |
op_source |
ISSN: 1463-5003 Ocean Modelling https://hal.science/hal-03334733 Ocean Modelling, 2019, 133, pp.44 - 55. ⟨10.1016/j.ocemod.2018.11.001⟩ |
op_relation |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ocemod.2018.11.001 hal-03334733 https://hal.science/hal-03334733 https://hal.science/hal-03334733/document https://hal.science/hal-03334733/file/jourdain_OceMod_2018_revised_2.pdf doi:10.1016/j.ocemod.2018.11.001 WOS: 000454511200004 |
op_rights |
info:eu-repo/semantics/OpenAccess |
op_doi |
https://doi.org/10.1016/j.ocemod.2018.11.001 |
container_title |
Ocean Modelling |
container_volume |
133 |
container_start_page |
44 |
op_container_end_page |
55 |
_version_ |
1801371456667385856 |
spelling |
ftepunivpsaclay:oai:HAL:hal-03334733v1 2024-06-09T07:38:18+00:00 Simulating or prescribing the influence of tides on the Amundsen Sea ice shelves Jourdain, Nicolas, C Molines, Jean-Marc Le Sommer, Julien Mathiot, Pierre Chanut, Jérôme de Lavergne, Casimir Madec, Gurvan Institut des Géosciences de l’Environnement (IGE) Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ) United Kingdom Met Office Exeter Mercator Océan Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Service hydrographique et océanographique de la Marine-Centre National de la Recherche Scientifique (CNRS)-Météo-France Nucleus for European Modeling of the Ocean (NEMO R&D ) Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN) Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)) École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité) ANR-15-CE01-0005,TROIS-AS,Vers un système de modélisation régionale océan / calotte / atmosphère(2015) ANR-10-LABX-0056,OSUG@2020,Innovative strategies for observing and modelling natural systems(2010) 2019 https://hal.science/hal-03334733 https://hal.science/hal-03334733/document https://hal.science/hal-03334733/file/jourdain_OceMod_2018_revised_2.pdf https://doi.org/10.1016/j.ocemod.2018.11.001 en eng HAL CCSD Elsevier info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ocemod.2018.11.001 hal-03334733 https://hal.science/hal-03334733 https://hal.science/hal-03334733/document https://hal.science/hal-03334733/file/jourdain_OceMod_2018_revised_2.pdf doi:10.1016/j.ocemod.2018.11.001 WOS: 000454511200004 info:eu-repo/semantics/OpenAccess ISSN: 1463-5003 Ocean Modelling https://hal.science/hal-03334733 Ocean Modelling, 2019, 133, pp.44 - 55. ⟨10.1016/j.ocemod.2018.11.001⟩ Pine Island Thwaites NEMO ice shelf cavity ice shelf melt tides Amundsen Sea [SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography [SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology info:eu-repo/semantics/article Journal articles 2019 ftepunivpsaclay https://doi.org/10.1016/j.ocemod.2018.11.001 2024-05-16T12:10:49Z International audience The representation of tides in regional ocean simulations of the Amundsen Sea enhances ice-shelf melting, with weakest effects for Pine Island and Thwaites (< +10%) and strongest effects for Dotson, Cosgrove and Abbot (> +30%). Tides increase vertical mixing throughout the water column along the continental shelf break. Diurnal tides induce topographically trapped vorticity waves along the continental shelf break, likely underpinning the tidal rectification (residual circulation) simulated in the Dotson-Getz Trough. However, the primary effect by which tides affect ice-shelf melting is the increase of ice/ocean exchanges, rather than the modification of water masses on the continental shelf. Tide-induced velocities strengthen turbulent heat fluxes at the ice/ocean interface, thereby increasing melt rates. Approximately a third of this effect is counterbalanced by the resulting release of cold melt water that reduces melt downstream along the meltwater flow. The relatively weak tideinduced melting underneath Pine Island and Thwaites could be partly related to their particularly thick water column, which limits the presence of quarter wavelength tidal resonance. No sensitivity to the position of Pine Island and Thwaites with respect to the M2 critical latitude is found. We refine and evaluate existing methodologies to prescribe the effect of tides on ice-shelf melt rates in ocean models that do not explicitely include tidal forcing. The best results are obtained by prescribing spatially-dependent tidal top-boundary-layer velocities in the melt equations. These velocities can be approximated as a linear function of existing barotropic tidal solutions. A correction factor needs to be applied to account for the additional melt-induced circulation associated with tides and to reproduce the relative importance of dynamical and thermodynamical processes. Article in Journal/Newspaper Amundsen Sea Ice Shelf Ice Shelves Sea ice École Polytechnique, Université Paris-Saclay: HAL Amundsen Sea Getz ENVELOPE(-145.217,-145.217,-76.550,-76.550) Dotson-Getz Trough ENVELOPE(-114.775,-114.775,-73.231,-73.231) Ocean Modelling 133 44 55 |