Atmospheric River Climatology in Antarctica

International audience To properly understand the future Antarctic surface mass balance (SMB) requires a complete understanding of the factors that influence SMB today. Atmospheric rivers, broadly defined as a narrow yet long bands of high precipitable water, provide a sub-tropical connection to the...

Full description

Bibliographic Details
Main Authors: Wille, Jonathan, Favier, Vincent, Codron, Francis, Dufour, Ambroise
Other Authors: Institut des Géosciences de l’Environnement (IGE), Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ), Océan et variabilité du climat (VARCLIM), Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), AGU
Format: Conference Object
Language:English
Published: HAL CCSD 2018
Subjects:
Online Access:https://hal.science/hal-02402511
id ftepunivpsaclay:oai:HAL:hal-02402511v1
record_format openpolar
institution Open Polar
collection École Polytechnique, Université Paris-Saclay: HAL
op_collection_id ftepunivpsaclay
language English
topic 3305 Climate change and variability
ATMOSPHERIC PROCESSESDE: 3339 Ocean/atmosphere interactions
ATMOSPHERIC PROCESSESDE: 3364 Synoptic-scale meteorology
ATMOSPHERIC PROCESSESDE: 1621 Cryospheric change
GLOBAL CHANGE
[PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph]
spellingShingle 3305 Climate change and variability
ATMOSPHERIC PROCESSESDE: 3339 Ocean/atmosphere interactions
ATMOSPHERIC PROCESSESDE: 3364 Synoptic-scale meteorology
ATMOSPHERIC PROCESSESDE: 1621 Cryospheric change
GLOBAL CHANGE
[PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph]
Wille, Jonathan
Favier, Vincent
Codron, Francis
Dufour, Ambroise
Atmospheric River Climatology in Antarctica
topic_facet 3305 Climate change and variability
ATMOSPHERIC PROCESSESDE: 3339 Ocean/atmosphere interactions
ATMOSPHERIC PROCESSESDE: 3364 Synoptic-scale meteorology
ATMOSPHERIC PROCESSESDE: 1621 Cryospheric change
GLOBAL CHANGE
[PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph]
description International audience To properly understand the future Antarctic surface mass balance (SMB) requires a complete understanding of the factors that influence SMB today. Atmospheric rivers, broadly defined as a narrow yet long bands of high precipitable water, provide a sub-tropical connection to the Antarctic continent and are observed to significantly impact the affected region's SMB over short, extreme events. Over coastal Dronning Maud Land, East Antarctica, Gorodetskaya et al. (2013) observed that 4-5 atmospheric rivers contributed to 74-80% of the region's SMB during 2009 and 2011. When an atmospheric river reaches the Antarctic continent, their signature is clearly observed in increased downward longwave radiation, upward vertical motion, temperature, snowfall, surface melt, and moisture transport. Using an atmospheric river detection algorithm designed for Antarctica and applied to ERA-Interim reanalysis data, we assess the frequency of atmospheric rivers and estimate their impact on total snowfall from 1979-2017 over the Antarctic continent. We also found that atmospheric rivers are associated with positive temperature anomalies and have consequences on surface melt, like in interior locations of Adélie Land. There is a weak seasonal trend in atmospheric river activity that is location dependent like in the Wilkes Land region where maximum activity occurs in July. Whether an atmospheric river reaches the Antarctic continent is dependent on the degree of upper-level atmospheric blocking. Atmospheric rivers are associated with significant positive geopotential height anomalies across all regions of Antarctica with the highest anomalies occurring around the Amundsen-Bellingshausen Sea and Adélie Land. Our results suggest that atmospheric rivers should play a significant role in the Antarctic SMB, and that any future changes in atmospheric blocking or tropical-polar teleconnections may have significant impacts on future SMB projections.
author2 Institut des Géosciences de l’Environnement (IGE)
Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )
Océan et variabilité du climat (VARCLIM)
Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN)
Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636))
École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636))
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
AGU
format Conference Object
author Wille, Jonathan
Favier, Vincent
Codron, Francis
Dufour, Ambroise
author_facet Wille, Jonathan
Favier, Vincent
Codron, Francis
Dufour, Ambroise
author_sort Wille, Jonathan
title Atmospheric River Climatology in Antarctica
title_short Atmospheric River Climatology in Antarctica
title_full Atmospheric River Climatology in Antarctica
title_fullStr Atmospheric River Climatology in Antarctica
title_full_unstemmed Atmospheric River Climatology in Antarctica
title_sort atmospheric river climatology in antarctica
publisher HAL CCSD
publishDate 2018
url https://hal.science/hal-02402511
op_coverage Washington, D.C., United States
genre Antarc*
Antarctic
Antarctica
Bellingshausen Sea
Dronning Maud Land
East Antarctica
Wilkes Land
genre_facet Antarc*
Antarctic
Antarctica
Bellingshausen Sea
Dronning Maud Land
East Antarctica
Wilkes Land
op_source American Geophysical Union, Fall Meeting 2018
https://hal.science/hal-02402511
American Geophysical Union, Fall Meeting 2018, AGU, Dec 2018, Washington, D.C., United States
op_relation hal-02402511
https://hal.science/hal-02402511
BIBCODE: 2018AGUFM.A51I2266W
_version_ 1796931497235578880
spelling ftepunivpsaclay:oai:HAL:hal-02402511v1 2024-04-21T07:49:13+00:00 Atmospheric River Climatology in Antarctica Wille, Jonathan Favier, Vincent Codron, Francis Dufour, Ambroise Institut des Géosciences de l’Environnement (IGE) Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ) Océan et variabilité du climat (VARCLIM) Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN) Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)) École normale supérieure - Paris (ENS-PSL) Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-École normale supérieure - Paris (ENS-PSL) Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)) Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité) AGU Washington, D.C., United States 2018-12-10 https://hal.science/hal-02402511 en eng HAL CCSD hal-02402511 https://hal.science/hal-02402511 BIBCODE: 2018AGUFM.A51I2266W American Geophysical Union, Fall Meeting 2018 https://hal.science/hal-02402511 American Geophysical Union, Fall Meeting 2018, AGU, Dec 2018, Washington, D.C., United States 3305 Climate change and variability ATMOSPHERIC PROCESSESDE: 3339 Ocean/atmosphere interactions ATMOSPHERIC PROCESSESDE: 3364 Synoptic-scale meteorology ATMOSPHERIC PROCESSESDE: 1621 Cryospheric change GLOBAL CHANGE [PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph] info:eu-repo/semantics/conferenceObject Conference papers 2018 ftepunivpsaclay 2024-04-10T23:55:58Z International audience To properly understand the future Antarctic surface mass balance (SMB) requires a complete understanding of the factors that influence SMB today. Atmospheric rivers, broadly defined as a narrow yet long bands of high precipitable water, provide a sub-tropical connection to the Antarctic continent and are observed to significantly impact the affected region's SMB over short, extreme events. Over coastal Dronning Maud Land, East Antarctica, Gorodetskaya et al. (2013) observed that 4-5 atmospheric rivers contributed to 74-80% of the region's SMB during 2009 and 2011. When an atmospheric river reaches the Antarctic continent, their signature is clearly observed in increased downward longwave radiation, upward vertical motion, temperature, snowfall, surface melt, and moisture transport. Using an atmospheric river detection algorithm designed for Antarctica and applied to ERA-Interim reanalysis data, we assess the frequency of atmospheric rivers and estimate their impact on total snowfall from 1979-2017 over the Antarctic continent. We also found that atmospheric rivers are associated with positive temperature anomalies and have consequences on surface melt, like in interior locations of Adélie Land. There is a weak seasonal trend in atmospheric river activity that is location dependent like in the Wilkes Land region where maximum activity occurs in July. Whether an atmospheric river reaches the Antarctic continent is dependent on the degree of upper-level atmospheric blocking. Atmospheric rivers are associated with significant positive geopotential height anomalies across all regions of Antarctica with the highest anomalies occurring around the Amundsen-Bellingshausen Sea and Adélie Land. Our results suggest that atmospheric rivers should play a significant role in the Antarctic SMB, and that any future changes in atmospheric blocking or tropical-polar teleconnections may have significant impacts on future SMB projections. Conference Object Antarc* Antarctic Antarctica Bellingshausen Sea Dronning Maud Land East Antarctica Wilkes Land École Polytechnique, Université Paris-Saclay: HAL