Future arctic ocean primary productivity from CMIP5 simulations: Uncertain outcome, but consistent mechanisms
International audience Net primary production (PP) in the Arctic should increase over this century, due to sea ice retreat, inducing an increase in available light, but could decrease if nitrate renewal is insufficient. Here, simulations performed with 11 Earth System Models from the CMIP5 exercise,...
Published in: | Global Biogeochemical Cycles |
---|---|
Main Authors: | , , , , , , |
Other Authors: | , , , , , , , , , , , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2013
|
Subjects: | |
Online Access: | https://hal.science/hal-01406230 https://hal.science/hal-01406230/document https://hal.science/hal-01406230/file/gbc.20055.pdf https://doi.org/10.1002/gbc.20055 |
id |
ftepunivpsaclay:oai:HAL:hal-01406230v1 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
École Polytechnique, Université Paris-Saclay: HAL |
op_collection_id |
ftepunivpsaclay |
language |
English |
topic |
sea ice nitrate primary production Arctic [SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere |
spellingShingle |
sea ice nitrate primary production Arctic [SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere Vancoppenolle, Martin Bopp, Laurent Madec, Gurvan Dunne, John Ilyina, Tatiana Halloran, Paul R. Steiner, Nadja Future arctic ocean primary productivity from CMIP5 simulations: Uncertain outcome, but consistent mechanisms |
topic_facet |
sea ice nitrate primary production Arctic [SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere |
description |
International audience Net primary production (PP) in the Arctic should increase over this century, due to sea ice retreat, inducing an increase in available light, but could decrease if nitrate renewal is insufficient. Here, simulations performed with 11 Earth System Models from the CMIP5 exercise, covering 1900-2100, are analyzed using Arctic PP, surface nitrate and sea ice concentrations. Whereas the mean model well simulates Arctic-integrated PP at 511 TgC/yr for 1998-2005 and projects a 58 TgC/yr increase by 2080-2099, models neither agree on what limits PP today, nor on the sign of future PP change. However, the same mechanisms operate in all models. First, both sea ice and nitrate decrease over the 21st century. Depending on the model, the strengthening nitrate stress is sufficient to overcome the effect of light increase. The inter-model spread stems from present nitrate stocks, poorly constrained by observations and characterized by an inter-model uncertainty of >50% of the mean. Second, virtually all models agree in the open ocean zones on more spatially-integrated PP and less PP per unit area. Where models disagree is the sea ice zone, where a subtle balance between light and nutrient limitations determines the change in productivity. Hence, it is argued that reducing uncertainty on present Arctic nitrate would render Arctic PP projections much more consistent. That is definitely required to understand the impact of climate change on the Arctic food webs and carbon cycle. |
author2 |
Processus de couplage à Petite Echelle, Ecosystèmes et Prédateurs Supérieurs (PEPS) Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN) Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)) École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS) Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA) Nucleus for European Modeling of the Ocean (NEMO R&D ) NOAA Geophysical Fluid Dynamics Laboratory (GFDL) National Oceanic and Atmospheric Administration (NOAA) Max Planck Institute for Meteorology (MPI-M) Max-Planck-Gesellschaft University of Exeter Fisheries and Oceans Canada (DFO) Canadian Centre for Climate Modelling and Analysis (CCCma) Environment and Climate Change Canada (ECCC) European Project: 321938,EC:FP7:PEOPLE,FP7-PEOPLE-2012-CIG,BISICLO(2012) |
format |
Article in Journal/Newspaper |
author |
Vancoppenolle, Martin Bopp, Laurent Madec, Gurvan Dunne, John Ilyina, Tatiana Halloran, Paul R. Steiner, Nadja |
author_facet |
Vancoppenolle, Martin Bopp, Laurent Madec, Gurvan Dunne, John Ilyina, Tatiana Halloran, Paul R. Steiner, Nadja |
author_sort |
Vancoppenolle, Martin |
title |
Future arctic ocean primary productivity from CMIP5 simulations: Uncertain outcome, but consistent mechanisms |
title_short |
Future arctic ocean primary productivity from CMIP5 simulations: Uncertain outcome, but consistent mechanisms |
title_full |
Future arctic ocean primary productivity from CMIP5 simulations: Uncertain outcome, but consistent mechanisms |
title_fullStr |
Future arctic ocean primary productivity from CMIP5 simulations: Uncertain outcome, but consistent mechanisms |
title_full_unstemmed |
Future arctic ocean primary productivity from CMIP5 simulations: Uncertain outcome, but consistent mechanisms |
title_sort |
future arctic ocean primary productivity from cmip5 simulations: uncertain outcome, but consistent mechanisms |
publisher |
HAL CCSD |
publishDate |
2013 |
url |
https://hal.science/hal-01406230 https://hal.science/hal-01406230/document https://hal.science/hal-01406230/file/gbc.20055.pdf https://doi.org/10.1002/gbc.20055 |
geographic |
Arctic Arctic Ocean |
geographic_facet |
Arctic Arctic Ocean |
genre |
Arctic Arctic Ocean Climate change Sea ice |
genre_facet |
Arctic Arctic Ocean Climate change Sea ice |
op_source |
ISSN: 0886-6236 EISSN: 1944-8224 Global Biogeochemical Cycles https://hal.science/hal-01406230 Global Biogeochemical Cycles, 2013, 27, pp.605-619. ⟨10.1002/gbc.20055⟩ |
op_relation |
info:eu-repo/semantics/altIdentifier/doi/10.1002/gbc.20055 info:eu-repo/grantAgreement/EC/FP7/321938/EU/BIogeochemical cycles, Sea Ice and CLimate in the Polar Oceans/BISICLO hal-01406230 https://hal.science/hal-01406230 https://hal.science/hal-01406230/document https://hal.science/hal-01406230/file/gbc.20055.pdf doi:10.1002/gbc.20055 WOS: 000325488600001 |
op_rights |
info:eu-repo/semantics/OpenAccess |
op_doi |
https://doi.org/10.1002/gbc.20055 |
container_title |
Global Biogeochemical Cycles |
container_volume |
27 |
container_issue |
3 |
container_start_page |
605 |
op_container_end_page |
619 |
_version_ |
1801371642634436608 |
spelling |
ftepunivpsaclay:oai:HAL:hal-01406230v1 2024-06-09T07:42:56+00:00 Future arctic ocean primary productivity from CMIP5 simulations: Uncertain outcome, but consistent mechanisms Vancoppenolle, Martin Bopp, Laurent Madec, Gurvan Dunne, John Ilyina, Tatiana Halloran, Paul R. Steiner, Nadja Processus de couplage à Petite Echelle, Ecosystèmes et Prédateurs Supérieurs (PEPS) Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN) Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)) École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS) Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA) Nucleus for European Modeling of the Ocean (NEMO R&D ) NOAA Geophysical Fluid Dynamics Laboratory (GFDL) National Oceanic and Atmospheric Administration (NOAA) Max Planck Institute for Meteorology (MPI-M) Max-Planck-Gesellschaft University of Exeter Fisheries and Oceans Canada (DFO) Canadian Centre for Climate Modelling and Analysis (CCCma) Environment and Climate Change Canada (ECCC) European Project: 321938,EC:FP7:PEOPLE,FP7-PEOPLE-2012-CIG,BISICLO(2012) 2013 https://hal.science/hal-01406230 https://hal.science/hal-01406230/document https://hal.science/hal-01406230/file/gbc.20055.pdf https://doi.org/10.1002/gbc.20055 en eng HAL CCSD American Geophysical Union info:eu-repo/semantics/altIdentifier/doi/10.1002/gbc.20055 info:eu-repo/grantAgreement/EC/FP7/321938/EU/BIogeochemical cycles, Sea Ice and CLimate in the Polar Oceans/BISICLO hal-01406230 https://hal.science/hal-01406230 https://hal.science/hal-01406230/document https://hal.science/hal-01406230/file/gbc.20055.pdf doi:10.1002/gbc.20055 WOS: 000325488600001 info:eu-repo/semantics/OpenAccess ISSN: 0886-6236 EISSN: 1944-8224 Global Biogeochemical Cycles https://hal.science/hal-01406230 Global Biogeochemical Cycles, 2013, 27, pp.605-619. ⟨10.1002/gbc.20055⟩ sea ice nitrate primary production Arctic [SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere info:eu-repo/semantics/article Journal articles 2013 ftepunivpsaclay https://doi.org/10.1002/gbc.20055 2024-05-16T12:18:45Z International audience Net primary production (PP) in the Arctic should increase over this century, due to sea ice retreat, inducing an increase in available light, but could decrease if nitrate renewal is insufficient. Here, simulations performed with 11 Earth System Models from the CMIP5 exercise, covering 1900-2100, are analyzed using Arctic PP, surface nitrate and sea ice concentrations. Whereas the mean model well simulates Arctic-integrated PP at 511 TgC/yr for 1998-2005 and projects a 58 TgC/yr increase by 2080-2099, models neither agree on what limits PP today, nor on the sign of future PP change. However, the same mechanisms operate in all models. First, both sea ice and nitrate decrease over the 21st century. Depending on the model, the strengthening nitrate stress is sufficient to overcome the effect of light increase. The inter-model spread stems from present nitrate stocks, poorly constrained by observations and characterized by an inter-model uncertainty of >50% of the mean. Second, virtually all models agree in the open ocean zones on more spatially-integrated PP and less PP per unit area. Where models disagree is the sea ice zone, where a subtle balance between light and nutrient limitations determines the change in productivity. Hence, it is argued that reducing uncertainty on present Arctic nitrate would render Arctic PP projections much more consistent. That is definitely required to understand the impact of climate change on the Arctic food webs and carbon cycle. Article in Journal/Newspaper Arctic Arctic Ocean Climate change Sea ice École Polytechnique, Université Paris-Saclay: HAL Arctic Arctic Ocean Global Biogeochemical Cycles 27 3 605 619 |