The Impact of a Variable Mixing Efficiency on the Abyssal Overturning
International audience In studies of ocean mixing, it is generally assumed that small-scale turbulent overturns lose 15%–20% of their energy in eroding the background stratification. Accumulating evidence that this energy fraction, or mixing efficiency R f , significantly varies depending on flow pr...
Published in: | Journal of Physical Oceanography |
---|---|
Main Authors: | , , , , |
Other Authors: | , , , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2016
|
Subjects: | |
Online Access: | https://hal.science/hal-01234058 https://hal.science/hal-01234058/document https://hal.science/hal-01234058/file/de_Lavergne_2015_The_impact_of_a.pdf https://doi.org/10.1175/JPO-D-14-0259.1 |
id |
ftepunivpsaclay:oai:HAL:hal-01234058v1 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
École Polytechnique, Université Paris-Saclay: HAL |
op_collection_id |
ftepunivpsaclay |
language |
English |
topic |
Upwelling/downwelling Circulation/Dynamics Abyssal circulation Diapycnal mixing Internal waves Meridional overturning circulation [PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph] |
spellingShingle |
Upwelling/downwelling Circulation/Dynamics Abyssal circulation Diapycnal mixing Internal waves Meridional overturning circulation [PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph] de Lavergne, Casimir Madec, Gurvan Le Sommer, Julien Nurser, A. J. George Naveira Garabato, Alberto C. The Impact of a Variable Mixing Efficiency on the Abyssal Overturning |
topic_facet |
Upwelling/downwelling Circulation/Dynamics Abyssal circulation Diapycnal mixing Internal waves Meridional overturning circulation [PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph] |
description |
International audience In studies of ocean mixing, it is generally assumed that small-scale turbulent overturns lose 15%–20% of their energy in eroding the background stratification. Accumulating evidence that this energy fraction, or mixing efficiency R f , significantly varies depending on flow properties challenges this assumption, however. Here, the authors examine the implications of a varying mixing efficiency for ocean energetics and deep-water mass transformation. Combining current parameterizations of internal wave-driven mixing with a recent model expressing R f as a function of a turbulence intensity parameter Re b = ε ν /νN 2 , the ratio of dissipation ε ν to stratification N 2 and molecular viscosity ν, it is shown that accounting for reduced mixing efficiencies in regions of weak stratification or energetic turbulence (high Reb) strongly limits the ability of breaking internal waves to supply oceanic potential energy and drive abyssal upwelling. Moving from a fixed R f = 1/6 to a variable efficiency R f (Re b ) causes Antarctic Bottom Water upwelling induced by locally dissipating internal tides and lee waves to fall from 9 to 4 Sverdrups (Sv; 1 Sv ≡ 10 6 m 3 s −1 ) and the corresponding potential energy source to plunge from 97 to 44 GW. When adding the contribution of remotely dissipating internal tides under idealized distributions of energy dissipation, the total rate of Antarctic Bottom Water upwelling is reduced by about a factor of 2, reaching 5–15 Sv, compared to 10–33 Sv for a fixed efficiency. The results suggest that distributed mixing, overflow-related boundary processes, and geothermal heating are more effective in consuming abyssal waters than topographically enhanced mixing by breaking internal waves. These calculations also point to the importance of accurately constraining R f (Re b ) and including the effect in ocean models. |
author2 |
Nucleus for European Modeling of the Ocean (NEMO R&D ) Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN) Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)) École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS) Laboratoire de glaciologie et géophysique de l'environnement (LGGE) Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ) Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ) National Oceanography Centre Southampton (NOC) University of Southampton |
format |
Article in Journal/Newspaper |
author |
de Lavergne, Casimir Madec, Gurvan Le Sommer, Julien Nurser, A. J. George Naveira Garabato, Alberto C. |
author_facet |
de Lavergne, Casimir Madec, Gurvan Le Sommer, Julien Nurser, A. J. George Naveira Garabato, Alberto C. |
author_sort |
de Lavergne, Casimir |
title |
The Impact of a Variable Mixing Efficiency on the Abyssal Overturning |
title_short |
The Impact of a Variable Mixing Efficiency on the Abyssal Overturning |
title_full |
The Impact of a Variable Mixing Efficiency on the Abyssal Overturning |
title_fullStr |
The Impact of a Variable Mixing Efficiency on the Abyssal Overturning |
title_full_unstemmed |
The Impact of a Variable Mixing Efficiency on the Abyssal Overturning |
title_sort |
impact of a variable mixing efficiency on the abyssal overturning |
publisher |
HAL CCSD |
publishDate |
2016 |
url |
https://hal.science/hal-01234058 https://hal.science/hal-01234058/document https://hal.science/hal-01234058/file/de_Lavergne_2015_The_impact_of_a.pdf https://doi.org/10.1175/JPO-D-14-0259.1 |
genre |
Antarc* Antarctic |
genre_facet |
Antarc* Antarctic |
op_source |
ISSN: 0022-3670 EISSN: 1520-0485 Journal of Physical Oceanography https://hal.science/hal-01234058 Journal of Physical Oceanography, 2016, 46 (2), pp.663-681. ⟨10.1175/JPO-D-14-0259.1⟩ http://journals.ametsoc.org/doi/abs/10.1175/JPO-D-14-0259.1 |
op_relation |
info:eu-repo/semantics/altIdentifier/doi/10.1175/JPO-D-14-0259.1 hal-01234058 https://hal.science/hal-01234058 https://hal.science/hal-01234058/document https://hal.science/hal-01234058/file/de_Lavergne_2015_The_impact_of_a.pdf doi:10.1175/JPO-D-14-0259.1 |
op_rights |
info:eu-repo/semantics/OpenAccess |
op_doi |
https://doi.org/10.1175/JPO-D-14-0259.1 |
container_title |
Journal of Physical Oceanography |
container_volume |
46 |
container_issue |
2 |
container_start_page |
663 |
op_container_end_page |
681 |
_version_ |
1799485322914955264 |
spelling |
ftepunivpsaclay:oai:HAL:hal-01234058v1 2024-05-19T07:30:19+00:00 The Impact of a Variable Mixing Efficiency on the Abyssal Overturning de Lavergne, Casimir Madec, Gurvan Le Sommer, Julien Nurser, A. J. George Naveira Garabato, Alberto C. Nucleus for European Modeling of the Ocean (NEMO R&D ) Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN) Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)) École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS) Laboratoire de glaciologie et géophysique de l'environnement (LGGE) Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ) Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ) National Oceanography Centre Southampton (NOC) University of Southampton 2016 https://hal.science/hal-01234058 https://hal.science/hal-01234058/document https://hal.science/hal-01234058/file/de_Lavergne_2015_The_impact_of_a.pdf https://doi.org/10.1175/JPO-D-14-0259.1 en eng HAL CCSD American Meteorological Society info:eu-repo/semantics/altIdentifier/doi/10.1175/JPO-D-14-0259.1 hal-01234058 https://hal.science/hal-01234058 https://hal.science/hal-01234058/document https://hal.science/hal-01234058/file/de_Lavergne_2015_The_impact_of_a.pdf doi:10.1175/JPO-D-14-0259.1 info:eu-repo/semantics/OpenAccess ISSN: 0022-3670 EISSN: 1520-0485 Journal of Physical Oceanography https://hal.science/hal-01234058 Journal of Physical Oceanography, 2016, 46 (2), pp.663-681. ⟨10.1175/JPO-D-14-0259.1⟩ http://journals.ametsoc.org/doi/abs/10.1175/JPO-D-14-0259.1 Upwelling/downwelling Circulation/Dynamics Abyssal circulation Diapycnal mixing Internal waves Meridional overturning circulation [PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph] info:eu-repo/semantics/article Journal articles 2016 ftepunivpsaclay https://doi.org/10.1175/JPO-D-14-0259.1 2024-04-25T00:57:09Z International audience In studies of ocean mixing, it is generally assumed that small-scale turbulent overturns lose 15%–20% of their energy in eroding the background stratification. Accumulating evidence that this energy fraction, or mixing efficiency R f , significantly varies depending on flow properties challenges this assumption, however. Here, the authors examine the implications of a varying mixing efficiency for ocean energetics and deep-water mass transformation. Combining current parameterizations of internal wave-driven mixing with a recent model expressing R f as a function of a turbulence intensity parameter Re b = ε ν /νN 2 , the ratio of dissipation ε ν to stratification N 2 and molecular viscosity ν, it is shown that accounting for reduced mixing efficiencies in regions of weak stratification or energetic turbulence (high Reb) strongly limits the ability of breaking internal waves to supply oceanic potential energy and drive abyssal upwelling. Moving from a fixed R f = 1/6 to a variable efficiency R f (Re b ) causes Antarctic Bottom Water upwelling induced by locally dissipating internal tides and lee waves to fall from 9 to 4 Sverdrups (Sv; 1 Sv ≡ 10 6 m 3 s −1 ) and the corresponding potential energy source to plunge from 97 to 44 GW. When adding the contribution of remotely dissipating internal tides under idealized distributions of energy dissipation, the total rate of Antarctic Bottom Water upwelling is reduced by about a factor of 2, reaching 5–15 Sv, compared to 10–33 Sv for a fixed efficiency. The results suggest that distributed mixing, overflow-related boundary processes, and geothermal heating are more effective in consuming abyssal waters than topographically enhanced mixing by breaking internal waves. These calculations also point to the importance of accurately constraining R f (Re b ) and including the effect in ocean models. Article in Journal/Newspaper Antarc* Antarctic École Polytechnique, Université Paris-Saclay: HAL Journal of Physical Oceanography 46 2 663 681 |