Quality assessment of the first measurements of tropospheric water vapor and temperature by the HAMSTRAD radiometer over concordia station, antarctica

The HAMSTRAD microwave instrument operates at 60 and 183 GHz and measures temperature and water vapor, respectively, from 0-to 10-km altitude with a time resolution of 7 min. The radiometer has been successfully deployed at Dome C (Concordia Station), Antarctica (75°06′S, 123°21′E, 3233 m amsl) duri...

Full description

Bibliographic Details
Published in:IEEE Transactions on Geoscience and Remote Sensing
Main Author: Pellegrini, A.
Format: Article in Journal/Newspaper
Language:English
Published: 2013
Subjects:
Online Access:https://hdl.handle.net/20.500.12079/814
https://doi.org/10.1109/TGRS.2012.2225627
http://www.scopus.com/inward/record.url?eid=2-s2.0-84878121679&partnerID=40&md5=0cea83c395dbd1591efbf4200de81616
Description
Summary:The HAMSTRAD microwave instrument operates at 60 and 183 GHz and measures temperature and water vapor, respectively, from 0-to 10-km altitude with a time resolution of 7 min. The radiometer has been successfully deployed at Dome C (Concordia Station), Antarctica (75°06′S, 123°21′E, 3233 m amsl) during the first summertime campaign for 12 days in January-February 2009. The radiometer has been continuously running since January 2010, hosted within a dedicated shelter. We have used the very first set of HAMSTRAD data, recorded when the instrument was outdoors, to assess its potential to sound the troposphere over Dome C, from the planetary boundary layer (PBL) up to the tropopause (∼ 6 km above surface, ∼9 km amsl). We have compared the HAMSTRAD measurements to several sets of measurements performed at the Dome-C station or in its vicinity: meteorological radiosondes, in situ PT100 and Humicap sondes along the vertical extent of a 45-m tower, meteorological sensor attached to the HAMSTRAD instrument, and the spaceborne Infrared Atmospheric Sounding Interferometer (IASI) instrument onboard the EUMETSAT MetOp-A satellite in polar orbit. The variability of integrated water vapor (IWV) observed by HAMSTRAD with extremely low values of 0.5 kg m-2 was also measured by the radiosondes (very high HAMSTRAD versus radiosonde correlation of 0.98), whereas IASI cloud-free measurements did not reproduce well the HAMSTRAD IWV variation (weak HAMSTRAD versus IASI correlation of 0.58). The measurements of absolute humidity (H2O) from HAMSTRAD at Dome C cover a large vertical extent from the surface to about 6 km above surface with a high sensitivity in the free troposphere. The strong diurnal variation of H 2O observed by the in situ sensors in the PBL is not well detected by the radiometer. In the free troposphere, the HAMSTRAD versus radiosonde H 2O correlation can reach 0.8-0.9. Around the tropopause, HAMSTRAD shows the same variability as IASI and radiosondes but with a dry bias of 0.01 g m-3. HAMSTRAD tends to show a wetter ...