Multidecadal trend analysis of in situ aerosol radiative properties around the world

In order to assess the evolution of aerosol parameters affecting climate change, a long-term trend analysis of aerosol optical properties was performed on time series from 52 stations situated across five continents. The time series of measured scattering, backscattering and absorption coefficients...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: Collaud Coen, Martine, Andrews, Elisabeth, Alastuey, Andrés, Petkov Arsov, Todor, Backman, John, Brem, Benjamin T., Bukowiecki, Nicolas, Couret, Cédric, Eleftheriadis, Konstantinos, Flentje, Harald, Fiebig, Markus, Gysel-Beer, Martin, Hand, Jenny L., Hoffer, András, Hooda, Rakesh, Hueglin, Christoph, Joubert, Warren, Keywood, Melita, Kim, Jeong Eun, Kim, Sang-Woo, Labuschagne, Casper, Lin, Neng-Huei, Lin, Yong, Lund Myhre, Cathrine, Luoma, Krista, Lyamani, Hassan, Marinoni, Angela, Mayol-Bracero, Olga L., Mihalopoulos, Nikos, Pandolfi, Marco, Prats, Natalia, Prenni, Anthony J., Putaud, Jean-Philippe, Ries, Ludwig, Reisen, Fabienne, Sellegri, Karine, Sharma, Sangeeta, Sheridan, Patrick, Sherman, James Patrick, Sun, Junying, Titos, Gloria, Torres, Elvis, Tuch, Thomas, Weller, Rolf, Wiedensohler, Alfred, Zieger, Paul, Laj, Paolo
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus 2020
Subjects:
Online Access:https://doi.org/10.5194/acp-20-8867-2020
id ftempa:oai:dora:empa_22840
record_format openpolar
spelling ftempa:oai:dora:empa_22840 2024-09-30T14:21:56+00:00 Multidecadal trend analysis of in situ aerosol radiative properties around the world Collaud Coen, Martine Andrews, Elisabeth Alastuey, Andrés Petkov Arsov, Todor Backman, John Brem, Benjamin T. Bukowiecki, Nicolas Couret, Cédric Eleftheriadis, Konstantinos Flentje, Harald Fiebig, Markus Gysel-Beer, Martin Hand, Jenny L. Hoffer, András Hooda, Rakesh Hueglin, Christoph Joubert, Warren Keywood, Melita Kim, Jeong Eun Kim, Sang-Woo Labuschagne, Casper Lin, Neng-Huei Lin, Yong Lund Myhre, Cathrine Luoma, Krista Lyamani, Hassan Marinoni, Angela Mayol-Bracero, Olga L. Mihalopoulos, Nikos Pandolfi, Marco Prats, Natalia Prenni, Anthony J. Putaud, Jean-Philippe Ries, Ludwig Reisen, Fabienne Sellegri, Karine Sharma, Sangeeta Sheridan, Patrick Sherman, James Patrick Sun, Junying Titos, Gloria Torres, Elvis Tuch, Thomas Weller, Rolf Wiedensohler, Alfred Zieger, Paul Laj, Paolo 2020 https://doi.org/10.5194/acp-20-8867-2020 eng eng Copernicus Atmospheric Chemistry and Physics--Atmos. Chem. Phys.--journals:265--1680-7316--1680-7324 empa:22840 doi:10.5194/acp-20-8867-2020 journal id: journals:265 issn: 1680-7316 e-issn: 1680-7324 ut: 000557331900004 scopus: 2-s2.0-85089418569 Journal Article Text 2020 ftempa https://doi.org/10.5194/acp-20-8867-2020 2024-09-04T03:37:35Z In order to assess the evolution of aerosol parameters affecting climate change, a long-term trend analysis of aerosol optical properties was performed on time series from 52 stations situated across five continents. The time series of measured scattering, backscattering and absorption coefficients as well as the derived single scattering albedo, backscattering fraction, scattering and absorption Ångström exponents covered at least 10 years and up to 40 years for some stations. The non-parametric seasonal Mann-Kendall (MK) statistical test associated with several pre-whitening methods and with Sen's slope was used as the main trend analysis method. Comparisons with general least mean square associated with autoregressive bootstrap (GLS/ARB) and with standard least mean square analysis (LMS) enabled confirmation of the detected MK statistically significant trends and the assessment of advantages and limitations of each method. Currently, scattering and backscattering coefficient trends are mostly decreasing in Europe and North America and are not statistically significant in Asia, while polar stations exhibit a mix of increasing and decreasing trends. A few increasing trends are also found at some stations in North America and Australia. Absorption coefficient time series also exhibit primarily decreasing trends. For single scattering albedo, 52 % of the sites exhibit statistically significant positive trends, mostly in Asia, eastern/northern Europe and the Arctic, 22 % of sites exhibit statistically significant negative trends, mostly in central Europe and central North America, while the remaining 26 % of sites have trends which are not statistically significant. In addition to evaluating trends for the overall time series, the evolution of the trends in sequential 10-year segments was also analyzed. For scattering and backscattering, statistically significant increasing 10-year trends are primarily found for earlier periods (10-year trends ending in 2010–2015) for polar stations and Mauna Loa. For most of the ... Article in Journal/Newspaper albedo Arctic Climate change DORA Empa Arctic Kendall ENVELOPE(-59.828,-59.828,-63.497,-63.497) Atmospheric Chemistry and Physics 20 14 8867 8908
institution Open Polar
collection DORA Empa
op_collection_id ftempa
language English
description In order to assess the evolution of aerosol parameters affecting climate change, a long-term trend analysis of aerosol optical properties was performed on time series from 52 stations situated across five continents. The time series of measured scattering, backscattering and absorption coefficients as well as the derived single scattering albedo, backscattering fraction, scattering and absorption Ångström exponents covered at least 10 years and up to 40 years for some stations. The non-parametric seasonal Mann-Kendall (MK) statistical test associated with several pre-whitening methods and with Sen's slope was used as the main trend analysis method. Comparisons with general least mean square associated with autoregressive bootstrap (GLS/ARB) and with standard least mean square analysis (LMS) enabled confirmation of the detected MK statistically significant trends and the assessment of advantages and limitations of each method. Currently, scattering and backscattering coefficient trends are mostly decreasing in Europe and North America and are not statistically significant in Asia, while polar stations exhibit a mix of increasing and decreasing trends. A few increasing trends are also found at some stations in North America and Australia. Absorption coefficient time series also exhibit primarily decreasing trends. For single scattering albedo, 52 % of the sites exhibit statistically significant positive trends, mostly in Asia, eastern/northern Europe and the Arctic, 22 % of sites exhibit statistically significant negative trends, mostly in central Europe and central North America, while the remaining 26 % of sites have trends which are not statistically significant. In addition to evaluating trends for the overall time series, the evolution of the trends in sequential 10-year segments was also analyzed. For scattering and backscattering, statistically significant increasing 10-year trends are primarily found for earlier periods (10-year trends ending in 2010–2015) for polar stations and Mauna Loa. For most of the ...
format Article in Journal/Newspaper
author Collaud Coen, Martine
Andrews, Elisabeth
Alastuey, Andrés
Petkov Arsov, Todor
Backman, John
Brem, Benjamin T.
Bukowiecki, Nicolas
Couret, Cédric
Eleftheriadis, Konstantinos
Flentje, Harald
Fiebig, Markus
Gysel-Beer, Martin
Hand, Jenny L.
Hoffer, András
Hooda, Rakesh
Hueglin, Christoph
Joubert, Warren
Keywood, Melita
Kim, Jeong Eun
Kim, Sang-Woo
Labuschagne, Casper
Lin, Neng-Huei
Lin, Yong
Lund Myhre, Cathrine
Luoma, Krista
Lyamani, Hassan
Marinoni, Angela
Mayol-Bracero, Olga L.
Mihalopoulos, Nikos
Pandolfi, Marco
Prats, Natalia
Prenni, Anthony J.
Putaud, Jean-Philippe
Ries, Ludwig
Reisen, Fabienne
Sellegri, Karine
Sharma, Sangeeta
Sheridan, Patrick
Sherman, James Patrick
Sun, Junying
Titos, Gloria
Torres, Elvis
Tuch, Thomas
Weller, Rolf
Wiedensohler, Alfred
Zieger, Paul
Laj, Paolo
spellingShingle Collaud Coen, Martine
Andrews, Elisabeth
Alastuey, Andrés
Petkov Arsov, Todor
Backman, John
Brem, Benjamin T.
Bukowiecki, Nicolas
Couret, Cédric
Eleftheriadis, Konstantinos
Flentje, Harald
Fiebig, Markus
Gysel-Beer, Martin
Hand, Jenny L.
Hoffer, András
Hooda, Rakesh
Hueglin, Christoph
Joubert, Warren
Keywood, Melita
Kim, Jeong Eun
Kim, Sang-Woo
Labuschagne, Casper
Lin, Neng-Huei
Lin, Yong
Lund Myhre, Cathrine
Luoma, Krista
Lyamani, Hassan
Marinoni, Angela
Mayol-Bracero, Olga L.
Mihalopoulos, Nikos
Pandolfi, Marco
Prats, Natalia
Prenni, Anthony J.
Putaud, Jean-Philippe
Ries, Ludwig
Reisen, Fabienne
Sellegri, Karine
Sharma, Sangeeta
Sheridan, Patrick
Sherman, James Patrick
Sun, Junying
Titos, Gloria
Torres, Elvis
Tuch, Thomas
Weller, Rolf
Wiedensohler, Alfred
Zieger, Paul
Laj, Paolo
Multidecadal trend analysis of in situ aerosol radiative properties around the world
author_facet Collaud Coen, Martine
Andrews, Elisabeth
Alastuey, Andrés
Petkov Arsov, Todor
Backman, John
Brem, Benjamin T.
Bukowiecki, Nicolas
Couret, Cédric
Eleftheriadis, Konstantinos
Flentje, Harald
Fiebig, Markus
Gysel-Beer, Martin
Hand, Jenny L.
Hoffer, András
Hooda, Rakesh
Hueglin, Christoph
Joubert, Warren
Keywood, Melita
Kim, Jeong Eun
Kim, Sang-Woo
Labuschagne, Casper
Lin, Neng-Huei
Lin, Yong
Lund Myhre, Cathrine
Luoma, Krista
Lyamani, Hassan
Marinoni, Angela
Mayol-Bracero, Olga L.
Mihalopoulos, Nikos
Pandolfi, Marco
Prats, Natalia
Prenni, Anthony J.
Putaud, Jean-Philippe
Ries, Ludwig
Reisen, Fabienne
Sellegri, Karine
Sharma, Sangeeta
Sheridan, Patrick
Sherman, James Patrick
Sun, Junying
Titos, Gloria
Torres, Elvis
Tuch, Thomas
Weller, Rolf
Wiedensohler, Alfred
Zieger, Paul
Laj, Paolo
author_sort Collaud Coen, Martine
title Multidecadal trend analysis of in situ aerosol radiative properties around the world
title_short Multidecadal trend analysis of in situ aerosol radiative properties around the world
title_full Multidecadal trend analysis of in situ aerosol radiative properties around the world
title_fullStr Multidecadal trend analysis of in situ aerosol radiative properties around the world
title_full_unstemmed Multidecadal trend analysis of in situ aerosol radiative properties around the world
title_sort multidecadal trend analysis of in situ aerosol radiative properties around the world
publisher Copernicus
publishDate 2020
url https://doi.org/10.5194/acp-20-8867-2020
long_lat ENVELOPE(-59.828,-59.828,-63.497,-63.497)
geographic Arctic
Kendall
geographic_facet Arctic
Kendall
genre albedo
Arctic
Climate change
genre_facet albedo
Arctic
Climate change
op_relation Atmospheric Chemistry and Physics--Atmos. Chem. Phys.--journals:265--1680-7316--1680-7324
empa:22840
doi:10.5194/acp-20-8867-2020
journal id: journals:265
issn: 1680-7316
e-issn: 1680-7324
ut: 000557331900004
scopus: 2-s2.0-85089418569
op_doi https://doi.org/10.5194/acp-20-8867-2020
container_title Atmospheric Chemistry and Physics
container_volume 20
container_issue 14
container_start_page 8867
op_container_end_page 8908
_version_ 1811646183877115904