New methods for measuring atmospheric heavy noble gas isotope and elemental ratios in ice core samples

Rationale : The global ocean constitutes the largest heat buffer in the global climate system, but little is known about its past changes. The isotopic and elemental ratios of heavy noble gases (krypton and xenon), together with argon and nitrogen in trapped air from ice cores, can be used to recons...

Full description

Bibliographic Details
Published in:Rapid Communications in Mass Spectrometry
Main Authors: Bereiter, Bernhard, Kawamura, Kenji, Severinghaus, Jeffrey P.
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 2018
Subjects:
Online Access:https://doi.org/10.1002/rcm.8099
id ftempa:oai:dora:empa_17172
record_format openpolar
spelling ftempa:oai:dora:empa_17172 2024-09-30T14:36:33+00:00 New methods for measuring atmospheric heavy noble gas isotope and elemental ratios in ice core samples Bereiter, Bernhard Kawamura, Kenji Severinghaus, Jeffrey P. 2018 https://doi.org/10.1002/rcm.8099 eng eng Wiley Rapid Communications in Mass Spectrometry--Rapid Commun. Mass Spectrom.--0951-4198--journals:2473--1097-0231 empa:17172 issn: 0951-4198 journal id: journals:2473 e-issn: 1097-0231 doi:10.1002/rcm.8099 ut: 000430691600005 scopus: 2-s2.0-85045844007 pmid: 29500867 Journal Article Text 2018 ftempa https://doi.org/10.1002/rcm.8099 2024-09-04T03:37:35Z Rationale : The global ocean constitutes the largest heat buffer in the global climate system, but little is known about its past changes. The isotopic and elemental ratios of heavy noble gases (krypton and xenon), together with argon and nitrogen in trapped air from ice cores, can be used to reconstruct past mean ocean temperatures (MOTs). Here we introduce two successively developed methods to measure these parameters with a sufficient precision to provide new constraints on past changes in MOT. Methods : The air from an 800‐g ice sample – containing roughly 80 mL STP air – is extracted and processed to be analyzed on two independent dual‐inlet isotope ratio mass spectrometers. The primary isotope ratios (δ 15 N, δ 40 Ar and δ 86 Kr values) are obtained with precisions in the range of 1 per meg (0.001‰) per mass unit. The three elemental ratio values δKr/N 2 , δXe/N 2 and δXe/Kr are obtained using sequential (non‐simultaneous) peak‐jumping, reaching precisions in the range of 0.1–0.3‰. Results : The latest version of the method achieves a 30% to 50% better precision on the elemental ratios and a twofold better sample throughput than the previous one. The method development uncovered an unexpected source of artefactual gas fractionation in a closed system that is caused by adiabatic cooling and warming of gases (termed adiabatic fractionation) – a potential source of measurement artifacts in other methods. Conclusions : The precisions of the three elemental ratios δKr/N 2 , δXe/N 2 and δXe/Kr – which all contain the same MOT information – suggest smaller uncertainties for reconstructed MOTs (±0.3–0.1°C) than previous studies have attained. Due to different sensitivities of the noble gases to changes in MOT, δXe/N 2 provides the best constraints on the MOT under the given precisions followed by δXe/Kr, and δKr/N 2 however, using all of them helps to detect methodological artifacts and issues with ice quality. Article in Journal/Newspaper ice core DORA Empa Rapid Communications in Mass Spectrometry 32 10 801 814
institution Open Polar
collection DORA Empa
op_collection_id ftempa
language English
description Rationale : The global ocean constitutes the largest heat buffer in the global climate system, but little is known about its past changes. The isotopic and elemental ratios of heavy noble gases (krypton and xenon), together with argon and nitrogen in trapped air from ice cores, can be used to reconstruct past mean ocean temperatures (MOTs). Here we introduce two successively developed methods to measure these parameters with a sufficient precision to provide new constraints on past changes in MOT. Methods : The air from an 800‐g ice sample – containing roughly 80 mL STP air – is extracted and processed to be analyzed on two independent dual‐inlet isotope ratio mass spectrometers. The primary isotope ratios (δ 15 N, δ 40 Ar and δ 86 Kr values) are obtained with precisions in the range of 1 per meg (0.001‰) per mass unit. The three elemental ratio values δKr/N 2 , δXe/N 2 and δXe/Kr are obtained using sequential (non‐simultaneous) peak‐jumping, reaching precisions in the range of 0.1–0.3‰. Results : The latest version of the method achieves a 30% to 50% better precision on the elemental ratios and a twofold better sample throughput than the previous one. The method development uncovered an unexpected source of artefactual gas fractionation in a closed system that is caused by adiabatic cooling and warming of gases (termed adiabatic fractionation) – a potential source of measurement artifacts in other methods. Conclusions : The precisions of the three elemental ratios δKr/N 2 , δXe/N 2 and δXe/Kr – which all contain the same MOT information – suggest smaller uncertainties for reconstructed MOTs (±0.3–0.1°C) than previous studies have attained. Due to different sensitivities of the noble gases to changes in MOT, δXe/N 2 provides the best constraints on the MOT under the given precisions followed by δXe/Kr, and δKr/N 2 however, using all of them helps to detect methodological artifacts and issues with ice quality.
format Article in Journal/Newspaper
author Bereiter, Bernhard
Kawamura, Kenji
Severinghaus, Jeffrey P.
spellingShingle Bereiter, Bernhard
Kawamura, Kenji
Severinghaus, Jeffrey P.
New methods for measuring atmospheric heavy noble gas isotope and elemental ratios in ice core samples
author_facet Bereiter, Bernhard
Kawamura, Kenji
Severinghaus, Jeffrey P.
author_sort Bereiter, Bernhard
title New methods for measuring atmospheric heavy noble gas isotope and elemental ratios in ice core samples
title_short New methods for measuring atmospheric heavy noble gas isotope and elemental ratios in ice core samples
title_full New methods for measuring atmospheric heavy noble gas isotope and elemental ratios in ice core samples
title_fullStr New methods for measuring atmospheric heavy noble gas isotope and elemental ratios in ice core samples
title_full_unstemmed New methods for measuring atmospheric heavy noble gas isotope and elemental ratios in ice core samples
title_sort new methods for measuring atmospheric heavy noble gas isotope and elemental ratios in ice core samples
publisher Wiley
publishDate 2018
url https://doi.org/10.1002/rcm.8099
genre ice core
genre_facet ice core
op_relation Rapid Communications in Mass Spectrometry--Rapid Commun. Mass Spectrom.--0951-4198--journals:2473--1097-0231
empa:17172
issn: 0951-4198
journal id: journals:2473
e-issn: 1097-0231
doi:10.1002/rcm.8099
ut: 000430691600005
scopus: 2-s2.0-85045844007
pmid: 29500867
op_doi https://doi.org/10.1002/rcm.8099
container_title Rapid Communications in Mass Spectrometry
container_volume 32
container_issue 10
container_start_page 801
op_container_end_page 814
_version_ 1811639582320492544