An energy budget approach to understand the Arctic warming during the Last Interglacial
International audience Abstract. The Last Interglacial period (129–116 ka) is characterised by a strong orbital forcing which leads to a different seasonal and latitudinal distribution of insolation compared to the pre-industrial period. In particular, these changes amplify the seasonality of the in...
Published in: | Climate of the Past |
---|---|
Main Authors: | , , , , |
Other Authors: | , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2022
|
Subjects: | |
Online Access: | https://hal.science/hal-03635491 https://hal.science/hal-03635491/document https://hal.science/hal-03635491/file/cp-18-607-2022.pdf https://doi.org/10.5194/cp-18-607-2022 |
id |
ftecoleponts:oai:HAL:hal-03635491v1 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
École des Ponts ParisTech: HAL |
op_collection_id |
ftecoleponts |
language |
English |
topic |
[SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology [SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere [INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation |
spellingShingle |
[SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology [SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere [INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation Sicard, Marie Kageyama, Masa Charbit, Sylvie Braconnot, Pascale Madeleine, Jean-Baptiste An energy budget approach to understand the Arctic warming during the Last Interglacial |
topic_facet |
[SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology [SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere [INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation |
description |
International audience Abstract. The Last Interglacial period (129–116 ka) is characterised by a strong orbital forcing which leads to a different seasonal and latitudinal distribution of insolation compared to the pre-industrial period. In particular, these changes amplify the seasonality of the insolation in the high latitudes of the Northern Hemisphere. Here, we investigate the Arctic climate response to this forcing by comparing the CMIP6 lig127k and piControl simulations performed with the IPSL-CM6A-LR (the global climate model developed at Institut Pierre-Simon Laplace) model. Using an energy budget framework, we analyse the interactions between the atmosphere, ocean, sea ice and continents. In summer, the insolation anomaly reaches its maximum and causes a rise in near-surface air temperature of 3.1 ∘C over the Arctic region. This warming is primarily due to a strong positive anomaly of surface downwelling shortwave radiation over continental surfaces, followed by large heat transfer from the continents to the atmosphere. The surface layers of the Arctic Ocean also receive more energy but in smaller quantity than the continents due to a cloud negative feedback. Furthermore, while heat exchange from the continental surfaces towards the atmosphere is strengthened, the ocean absorbs and stores the heat excess due to a decline in sea ice cover. However, the maximum near-surface air temperature anomaly does not peak in summer like insolation but occurs in autumn with a temperature increase of 4.2 ∘C relative to the pre-industrial period. This strong warming is driven by a positive anomaly of longwave radiation over the Arctic Ocean enhanced by a positive cloud feedback. It is also favoured by the summer and autumn Arctic sea ice retreat (-1.9×106 and -3.4×106 km2, respectively), which exposes the warm oceanic surface and thus allows oceanic heat storage and release of water vapour in summer. This study highlights the crucial role of sea ice cover variations, Arctic Ocean, as well as changes in polar cloud ... |
author2 |
Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA) Laboratoire de Météorologie Dynamique (UMR 8539) (LMD) Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X) Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL) |
format |
Article in Journal/Newspaper |
author |
Sicard, Marie Kageyama, Masa Charbit, Sylvie Braconnot, Pascale Madeleine, Jean-Baptiste |
author_facet |
Sicard, Marie Kageyama, Masa Charbit, Sylvie Braconnot, Pascale Madeleine, Jean-Baptiste |
author_sort |
Sicard, Marie |
title |
An energy budget approach to understand the Arctic warming during the Last Interglacial |
title_short |
An energy budget approach to understand the Arctic warming during the Last Interglacial |
title_full |
An energy budget approach to understand the Arctic warming during the Last Interglacial |
title_fullStr |
An energy budget approach to understand the Arctic warming during the Last Interglacial |
title_full_unstemmed |
An energy budget approach to understand the Arctic warming during the Last Interglacial |
title_sort |
energy budget approach to understand the arctic warming during the last interglacial |
publisher |
HAL CCSD |
publishDate |
2022 |
url |
https://hal.science/hal-03635491 https://hal.science/hal-03635491/document https://hal.science/hal-03635491/file/cp-18-607-2022.pdf https://doi.org/10.5194/cp-18-607-2022 |
long_lat |
ENVELOPE(141.467,141.467,-66.782,-66.782) |
geographic |
Arctic Arctic Ocean Laplace |
geographic_facet |
Arctic Arctic Ocean Laplace |
genre |
Arctic Arctic Ocean Sea ice |
genre_facet |
Arctic Arctic Ocean Sea ice |
op_source |
ISSN: 1814-9324 EISSN: 1814-9332 Climate of the Past https://hal.science/hal-03635491 Climate of the Past, 2022, 18 (3), pp.607-629. ⟨10.5194/cp-18-607-2022⟩ |
op_relation |
info:eu-repo/semantics/altIdentifier/doi/10.5194/cp-18-607-2022 hal-03635491 https://hal.science/hal-03635491 https://hal.science/hal-03635491/document https://hal.science/hal-03635491/file/cp-18-607-2022.pdf doi:10.5194/cp-18-607-2022 |
op_rights |
http://creativecommons.org/licenses/by/ info:eu-repo/semantics/OpenAccess |
op_doi |
https://doi.org/10.5194/cp-18-607-2022 |
container_title |
Climate of the Past |
container_volume |
18 |
container_issue |
3 |
container_start_page |
607 |
op_container_end_page |
629 |
_version_ |
1811634858176282624 |
spelling |
ftecoleponts:oai:HAL:hal-03635491v1 2024-09-30T14:29:36+00:00 An energy budget approach to understand the Arctic warming during the Last Interglacial Sicard, Marie Kageyama, Masa Charbit, Sylvie Braconnot, Pascale Madeleine, Jean-Baptiste Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA) Laboratoire de Météorologie Dynamique (UMR 8539) (LMD) Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X) Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL) 2022-03-31 https://hal.science/hal-03635491 https://hal.science/hal-03635491/document https://hal.science/hal-03635491/file/cp-18-607-2022.pdf https://doi.org/10.5194/cp-18-607-2022 en eng HAL CCSD European Geosciences Union (EGU) info:eu-repo/semantics/altIdentifier/doi/10.5194/cp-18-607-2022 hal-03635491 https://hal.science/hal-03635491 https://hal.science/hal-03635491/document https://hal.science/hal-03635491/file/cp-18-607-2022.pdf doi:10.5194/cp-18-607-2022 http://creativecommons.org/licenses/by/ info:eu-repo/semantics/OpenAccess ISSN: 1814-9324 EISSN: 1814-9332 Climate of the Past https://hal.science/hal-03635491 Climate of the Past, 2022, 18 (3), pp.607-629. ⟨10.5194/cp-18-607-2022⟩ [SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology [SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere [INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation info:eu-repo/semantics/article Journal articles 2022 ftecoleponts https://doi.org/10.5194/cp-18-607-2022 2024-09-03T23:44:47Z International audience Abstract. The Last Interglacial period (129–116 ka) is characterised by a strong orbital forcing which leads to a different seasonal and latitudinal distribution of insolation compared to the pre-industrial period. In particular, these changes amplify the seasonality of the insolation in the high latitudes of the Northern Hemisphere. Here, we investigate the Arctic climate response to this forcing by comparing the CMIP6 lig127k and piControl simulations performed with the IPSL-CM6A-LR (the global climate model developed at Institut Pierre-Simon Laplace) model. Using an energy budget framework, we analyse the interactions between the atmosphere, ocean, sea ice and continents. In summer, the insolation anomaly reaches its maximum and causes a rise in near-surface air temperature of 3.1 ∘C over the Arctic region. This warming is primarily due to a strong positive anomaly of surface downwelling shortwave radiation over continental surfaces, followed by large heat transfer from the continents to the atmosphere. The surface layers of the Arctic Ocean also receive more energy but in smaller quantity than the continents due to a cloud negative feedback. Furthermore, while heat exchange from the continental surfaces towards the atmosphere is strengthened, the ocean absorbs and stores the heat excess due to a decline in sea ice cover. However, the maximum near-surface air temperature anomaly does not peak in summer like insolation but occurs in autumn with a temperature increase of 4.2 ∘C relative to the pre-industrial period. This strong warming is driven by a positive anomaly of longwave radiation over the Arctic Ocean enhanced by a positive cloud feedback. It is also favoured by the summer and autumn Arctic sea ice retreat (-1.9×106 and -3.4×106 km2, respectively), which exposes the warm oceanic surface and thus allows oceanic heat storage and release of water vapour in summer. This study highlights the crucial role of sea ice cover variations, Arctic Ocean, as well as changes in polar cloud ... Article in Journal/Newspaper Arctic Arctic Ocean Sea ice École des Ponts ParisTech: HAL Arctic Arctic Ocean Laplace ENVELOPE(141.467,141.467,-66.782,-66.782) Climate of the Past 18 3 607 629 |