3D modeling of organic haze in Pluto’s atmosphere

International audience The New Horizons spacecraft, which flew by Pluto on July 14, 2015, revealed the presence of haze in Pluto’s atmosphere that were formed by CH4/N2 photochemistry at high altitudes in Pluto’s atmosphere, as on Titan and Triton. In order to help the analysis of the observations a...

Full description

Bibliographic Details
Published in:Icarus
Main Authors: Bertrand, Tanguy, Forget, François
Other Authors: Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2017
Subjects:
GCM
Online Access:https://hal.sorbonne-universite.fr/hal-01447911
https://hal.sorbonne-universite.fr/hal-01447911/document
https://hal.sorbonne-universite.fr/hal-01447911/file/Bertrand_3D_modeling_of.pdf
https://doi.org/10.1016/j.icarus.2017.01.016
id ftecoleponts:oai:HAL:hal-01447911v1
record_format openpolar
spelling ftecoleponts:oai:HAL:hal-01447911v1 2024-06-09T07:48:27+00:00 3D modeling of organic haze in Pluto’s atmosphere Bertrand, Tanguy Forget, François Laboratoire de Météorologie Dynamique (UMR 8539) (LMD) Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL) 2017 https://hal.sorbonne-universite.fr/hal-01447911 https://hal.sorbonne-universite.fr/hal-01447911/document https://hal.sorbonne-universite.fr/hal-01447911/file/Bertrand_3D_modeling_of.pdf https://doi.org/10.1016/j.icarus.2017.01.016 en eng HAL CCSD Elsevier info:eu-repo/semantics/altIdentifier/doi/10.1016/j.icarus.2017.01.016 hal-01447911 https://hal.sorbonne-universite.fr/hal-01447911 https://hal.sorbonne-universite.fr/hal-01447911/document https://hal.sorbonne-universite.fr/hal-01447911/file/Bertrand_3D_modeling_of.pdf doi:10.1016/j.icarus.2017.01.016 info:eu-repo/semantics/OpenAccess ISSN: 0019-1035 EISSN: 1090-2643 Icarus https://hal.sorbonne-universite.fr/hal-01447911 Icarus, 2017, ⟨10.1016/j.icarus.2017.01.016⟩ Pluto Atmosphere Haze Modeling GCM [SDU.STU.ME]Sciences of the Universe [physics]/Earth Sciences/Meteorology info:eu-repo/semantics/article Journal articles 2017 ftecoleponts https://doi.org/10.1016/j.icarus.2017.01.016 2024-05-16T13:21:43Z International audience The New Horizons spacecraft, which flew by Pluto on July 14, 2015, revealed the presence of haze in Pluto’s atmosphere that were formed by CH4/N2 photochemistry at high altitudes in Pluto’s atmosphere, as on Titan and Triton. In order to help the analysis of the observations and further investigate the formation of organic haze and its evolution at global scales, we have implemented a simple parametrization of the formation of organic haze in our Pluto General Circulation Model. The production of haze in our model is based on the different steps of aerosol formation as understood on Titan and Triton: photolysis of CH4 in the upper atmosphere by Lyman-α UV radiation, production of various gaseous species, and conversion into solid particles through accumulation and aggregation processes. The simulations use properties of aerosols similar to those observed in the detached haze layer on Titan. We compared two reference simulations ran with a particle radius of 50 nm: with, and without South Pole N2 condensation. We discuss the impact of the particle radius and the lifetime of the precursors on the haze distribution. We simulate CH4 photolysis and the haze formation up to 600 km above the surface. Results show that CH4 photolysis in Pluto’s atmosphere in 2015 occured mostly in the sunlit summer hemisphere with a peak at an altitude of 250 km, though the interplanetary source of Lyman-α flux can induce some photolysis even in the Winter hemisphere. We obtained an extensive haze up to altitudes comparable with the observations, and with non-negligible densities up to 500 km altitude. In both reference simulations, the haze density is not strongly impacted by the meridional circulation. With no South Pole N2 condensation, the maximum nadir opacity and haze extent is obtained at the North Pole. With South Pole N2 condensation, the descending parcel of air above the South Pole leads to a latitudinally more homogeneous haze density with a slight density peak at the South Pole. The visible ... Article in Journal/Newspaper North Pole South pole École des Ponts ParisTech: HAL South Pole North Pole Triton ENVELOPE(-55.615,-55.615,49.517,49.517) Icarus 287 72 86
institution Open Polar
collection École des Ponts ParisTech: HAL
op_collection_id ftecoleponts
language English
topic Pluto
Atmosphere
Haze
Modeling
GCM
[SDU.STU.ME]Sciences of the Universe [physics]/Earth Sciences/Meteorology
spellingShingle Pluto
Atmosphere
Haze
Modeling
GCM
[SDU.STU.ME]Sciences of the Universe [physics]/Earth Sciences/Meteorology
Bertrand, Tanguy
Forget, François
3D modeling of organic haze in Pluto’s atmosphere
topic_facet Pluto
Atmosphere
Haze
Modeling
GCM
[SDU.STU.ME]Sciences of the Universe [physics]/Earth Sciences/Meteorology
description International audience The New Horizons spacecraft, which flew by Pluto on July 14, 2015, revealed the presence of haze in Pluto’s atmosphere that were formed by CH4/N2 photochemistry at high altitudes in Pluto’s atmosphere, as on Titan and Triton. In order to help the analysis of the observations and further investigate the formation of organic haze and its evolution at global scales, we have implemented a simple parametrization of the formation of organic haze in our Pluto General Circulation Model. The production of haze in our model is based on the different steps of aerosol formation as understood on Titan and Triton: photolysis of CH4 in the upper atmosphere by Lyman-α UV radiation, production of various gaseous species, and conversion into solid particles through accumulation and aggregation processes. The simulations use properties of aerosols similar to those observed in the detached haze layer on Titan. We compared two reference simulations ran with a particle radius of 50 nm: with, and without South Pole N2 condensation. We discuss the impact of the particle radius and the lifetime of the precursors on the haze distribution. We simulate CH4 photolysis and the haze formation up to 600 km above the surface. Results show that CH4 photolysis in Pluto’s atmosphere in 2015 occured mostly in the sunlit summer hemisphere with a peak at an altitude of 250 km, though the interplanetary source of Lyman-α flux can induce some photolysis even in the Winter hemisphere. We obtained an extensive haze up to altitudes comparable with the observations, and with non-negligible densities up to 500 km altitude. In both reference simulations, the haze density is not strongly impacted by the meridional circulation. With no South Pole N2 condensation, the maximum nadir opacity and haze extent is obtained at the North Pole. With South Pole N2 condensation, the descending parcel of air above the South Pole leads to a latitudinally more homogeneous haze density with a slight density peak at the South Pole. The visible ...
author2 Laboratoire de Météorologie Dynamique (UMR 8539) (LMD)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris
École normale supérieure - Paris (ENS-PSL)
Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL)
Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)
format Article in Journal/Newspaper
author Bertrand, Tanguy
Forget, François
author_facet Bertrand, Tanguy
Forget, François
author_sort Bertrand, Tanguy
title 3D modeling of organic haze in Pluto’s atmosphere
title_short 3D modeling of organic haze in Pluto’s atmosphere
title_full 3D modeling of organic haze in Pluto’s atmosphere
title_fullStr 3D modeling of organic haze in Pluto’s atmosphere
title_full_unstemmed 3D modeling of organic haze in Pluto’s atmosphere
title_sort 3d modeling of organic haze in pluto’s atmosphere
publisher HAL CCSD
publishDate 2017
url https://hal.sorbonne-universite.fr/hal-01447911
https://hal.sorbonne-universite.fr/hal-01447911/document
https://hal.sorbonne-universite.fr/hal-01447911/file/Bertrand_3D_modeling_of.pdf
https://doi.org/10.1016/j.icarus.2017.01.016
long_lat ENVELOPE(-55.615,-55.615,49.517,49.517)
geographic South Pole
North Pole
Triton
geographic_facet South Pole
North Pole
Triton
genre North Pole
South pole
genre_facet North Pole
South pole
op_source ISSN: 0019-1035
EISSN: 1090-2643
Icarus
https://hal.sorbonne-universite.fr/hal-01447911
Icarus, 2017, ⟨10.1016/j.icarus.2017.01.016⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1016/j.icarus.2017.01.016
hal-01447911
https://hal.sorbonne-universite.fr/hal-01447911
https://hal.sorbonne-universite.fr/hal-01447911/document
https://hal.sorbonne-universite.fr/hal-01447911/file/Bertrand_3D_modeling_of.pdf
doi:10.1016/j.icarus.2017.01.016
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.1016/j.icarus.2017.01.016
container_title Icarus
container_volume 287
container_start_page 72
op_container_end_page 86
_version_ 1801380181088141312