Warm climate isotopic simulations: What do we learn about interglacial signals in Greenland ice cores?

International audience Measurements of Last Interglacial stable water isotopes in ice cores show that central Greenland d18O increased by at least 3‰ compared to present day. Attempting to quantify the Greenland interglacial temperature change from these ice core measurements rests on our ability to...

Full description

Bibliographic Details
Published in:Quaternary Science Reviews
Main Authors: Sime, L.C., Risi, Camille, Tindall, J.C., Sjolte, J., Wolff, E.W., Masson-Delmotte, Valérie, Capron, E.
Other Authors: British Antarctic Survey (BAS), Natural Environment Research Council (NERC), Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder -National Oceanic and Atmospheric Administration (NOAA), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL), School of Earth and Environment Leeds (SEE), University of Leeds, Centre for Ice and Climate Copenhagen, Niels Bohr Institute Copenhagen (NBI), Faculty of Science Copenhagen, University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH)-Faculty of Science Copenhagen, University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH), Skane University Hospital Lund, Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Glaces et Continents, Climats et Isotopes Stables (GLACCIOS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2013
Subjects:
Online Access:https://hal.science/hal-01108532
https://hal.science/hal-01108532/document
https://hal.science/hal-01108532/file/JQSR-D-12-00327R1-1_postprint.pdf
https://doi.org/10.1016/j.quascirev.2013.01.009
id ftecoleponts:oai:HAL:hal-01108532v1
record_format openpolar
institution Open Polar
collection École des Ponts ParisTech: HAL
op_collection_id ftecoleponts
language English
topic [SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology
[SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology
spellingShingle [SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology
[SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology
Sime, L.C.
Risi, Camille
Tindall, J.C.
Sjolte, J.
Wolff, E.W.
Masson-Delmotte, Valérie
Capron, E.
Warm climate isotopic simulations: What do we learn about interglacial signals in Greenland ice cores?
topic_facet [SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology
[SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology
description International audience Measurements of Last Interglacial stable water isotopes in ice cores show that central Greenland d18O increased by at least 3‰ compared to present day. Attempting to quantify the Greenland interglacial temperature change from these ice core measurements rests on our ability to interpret the stable water isotope content of Greenland snow. Current orbitally driven interglacial simulations do not show d18O or temperature rises of the correct magnitude, leading to difficulty in using only these experiments to inform our understanding of higher interglacial d18O. Here, analysis of greenhouse gas warmed simulations from two isotope-enabled general circulation models, in conjunction with a set of Last Interglacial sea surface observations, indicates a possible explanation for the interglacial d18O rise. A reduction in the winter time sea ice concentration around the northern half of Greenland, together with an increase in sea surface temperatures over the same region, is found to be sufficient to drive a >3‰ interglacial enrichment in central Greenland snow. Warm climate d18O and dD in precipitation falling on Greenland are shown to be strongly influenced by local sea surface condition changes: local sea surface warming and a shrunken sea ice extent increase the proportion of water vapour from local (isotopically enriched) sources, compared to that from distal (isotopically depleted) sources. Precipitation intermittency changes, under warmer conditions, leads to geographical variability in the d18O against temperature gradients across Greenland. Little sea surface warming around the northern areas of Greenland leads to low d18O against temperature gradients (0.1-0.3‰ per °C), whilst large sea surface warmings in these regions leads to higher gradients (0.3-0.7‰ per °C). These gradients imply a wide possible range of present day to interglacial temperature increases (4 to >10 °C). Thus, we find that uncertainty about local interglacial sea surface conditions, rather than precipitation ...
author2 British Antarctic Survey (BAS)
Natural Environment Research Council (NERC)
Cooperative Institute for Research in Environmental Sciences (CIRES)
University of Colorado Boulder -National Oceanic and Atmospheric Administration (NOAA)
Laboratoire de Météorologie Dynamique (UMR 8539) (LMD)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris
École normale supérieure - Paris (ENS-PSL)
Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL)
Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)
School of Earth and Environment Leeds (SEE)
University of Leeds
Centre for Ice and Climate Copenhagen
Niels Bohr Institute Copenhagen (NBI)
Faculty of Science Copenhagen
University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH)-Faculty of Science Copenhagen
University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH)
Skane University Hospital Lund
Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Glaces et Continents, Climats et Isotopes Stables (GLACCIOS)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
format Article in Journal/Newspaper
author Sime, L.C.
Risi, Camille
Tindall, J.C.
Sjolte, J.
Wolff, E.W.
Masson-Delmotte, Valérie
Capron, E.
author_facet Sime, L.C.
Risi, Camille
Tindall, J.C.
Sjolte, J.
Wolff, E.W.
Masson-Delmotte, Valérie
Capron, E.
author_sort Sime, L.C.
title Warm climate isotopic simulations: What do we learn about interglacial signals in Greenland ice cores?
title_short Warm climate isotopic simulations: What do we learn about interglacial signals in Greenland ice cores?
title_full Warm climate isotopic simulations: What do we learn about interglacial signals in Greenland ice cores?
title_fullStr Warm climate isotopic simulations: What do we learn about interglacial signals in Greenland ice cores?
title_full_unstemmed Warm climate isotopic simulations: What do we learn about interglacial signals in Greenland ice cores?
title_sort warm climate isotopic simulations: what do we learn about interglacial signals in greenland ice cores?
publisher HAL CCSD
publishDate 2013
url https://hal.science/hal-01108532
https://hal.science/hal-01108532/document
https://hal.science/hal-01108532/file/JQSR-D-12-00327R1-1_postprint.pdf
https://doi.org/10.1016/j.quascirev.2013.01.009
geographic Greenland
geographic_facet Greenland
genre Greenland
Greenland ice cores
ice core
Sea ice
genre_facet Greenland
Greenland ice cores
ice core
Sea ice
op_source ISSN: 0277-3791
EISSN: 1873-457X
Quaternary Science Reviews
https://hal.science/hal-01108532
Quaternary Science Reviews, 2013, 67 (may), pp.59-80. ⟨10.1016/j.quascirev.2013.01.009⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1016/j.quascirev.2013.01.009
hal-01108532
https://hal.science/hal-01108532
https://hal.science/hal-01108532/document
https://hal.science/hal-01108532/file/JQSR-D-12-00327R1-1_postprint.pdf
doi:10.1016/j.quascirev.2013.01.009
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.1016/j.quascirev.2013.01.009
container_title Quaternary Science Reviews
container_volume 67
container_start_page 59
op_container_end_page 80
_version_ 1801375995061600256
spelling ftecoleponts:oai:HAL:hal-01108532v1 2024-06-09T07:46:14+00:00 Warm climate isotopic simulations: What do we learn about interglacial signals in Greenland ice cores? Sime, L.C. Risi, Camille Tindall, J.C. Sjolte, J. Wolff, E.W. Masson-Delmotte, Valérie Capron, E. British Antarctic Survey (BAS) Natural Environment Research Council (NERC) Cooperative Institute for Research in Environmental Sciences (CIRES) University of Colorado Boulder -National Oceanic and Atmospheric Administration (NOAA) Laboratoire de Météorologie Dynamique (UMR 8539) (LMD) Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL) School of Earth and Environment Leeds (SEE) University of Leeds Centre for Ice and Climate Copenhagen Niels Bohr Institute Copenhagen (NBI) Faculty of Science Copenhagen University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH)-Faculty of Science Copenhagen University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH) Skane University Hospital Lund Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA) Glaces et Continents, Climats et Isotopes Stables (GLACCIOS) Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) 2013-05-01 https://hal.science/hal-01108532 https://hal.science/hal-01108532/document https://hal.science/hal-01108532/file/JQSR-D-12-00327R1-1_postprint.pdf https://doi.org/10.1016/j.quascirev.2013.01.009 en eng HAL CCSD Elsevier info:eu-repo/semantics/altIdentifier/doi/10.1016/j.quascirev.2013.01.009 hal-01108532 https://hal.science/hal-01108532 https://hal.science/hal-01108532/document https://hal.science/hal-01108532/file/JQSR-D-12-00327R1-1_postprint.pdf doi:10.1016/j.quascirev.2013.01.009 info:eu-repo/semantics/OpenAccess ISSN: 0277-3791 EISSN: 1873-457X Quaternary Science Reviews https://hal.science/hal-01108532 Quaternary Science Reviews, 2013, 67 (may), pp.59-80. ⟨10.1016/j.quascirev.2013.01.009⟩ [SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology [SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology info:eu-repo/semantics/article Journal articles 2013 ftecoleponts https://doi.org/10.1016/j.quascirev.2013.01.009 2024-05-16T12:50:43Z International audience Measurements of Last Interglacial stable water isotopes in ice cores show that central Greenland d18O increased by at least 3‰ compared to present day. Attempting to quantify the Greenland interglacial temperature change from these ice core measurements rests on our ability to interpret the stable water isotope content of Greenland snow. Current orbitally driven interglacial simulations do not show d18O or temperature rises of the correct magnitude, leading to difficulty in using only these experiments to inform our understanding of higher interglacial d18O. Here, analysis of greenhouse gas warmed simulations from two isotope-enabled general circulation models, in conjunction with a set of Last Interglacial sea surface observations, indicates a possible explanation for the interglacial d18O rise. A reduction in the winter time sea ice concentration around the northern half of Greenland, together with an increase in sea surface temperatures over the same region, is found to be sufficient to drive a >3‰ interglacial enrichment in central Greenland snow. Warm climate d18O and dD in precipitation falling on Greenland are shown to be strongly influenced by local sea surface condition changes: local sea surface warming and a shrunken sea ice extent increase the proportion of water vapour from local (isotopically enriched) sources, compared to that from distal (isotopically depleted) sources. Precipitation intermittency changes, under warmer conditions, leads to geographical variability in the d18O against temperature gradients across Greenland. Little sea surface warming around the northern areas of Greenland leads to low d18O against temperature gradients (0.1-0.3‰ per °C), whilst large sea surface warmings in these regions leads to higher gradients (0.3-0.7‰ per °C). These gradients imply a wide possible range of present day to interglacial temperature increases (4 to >10 °C). Thus, we find that uncertainty about local interglacial sea surface conditions, rather than precipitation ... Article in Journal/Newspaper Greenland Greenland ice cores ice core Sea ice École des Ponts ParisTech: HAL Greenland Quaternary Science Reviews 67 59 80