Global modelling of the early martian climate under a denser CO2 atmosphere: Water cycle and ice evolution

International audience We discuss 3D global simulations of the early martian climate that we have performed assuming a faint young Sun and denser CO2 atmosphere. We include a self-consistent representation of the water cycle, with atmosphere-surface interactions, atmospheric transport, and the radia...

Full description

Bibliographic Details
Published in:Icarus
Main Authors: Wordsworth, R., Forget, F., Millour, E., Head, J. W., Charnay, B., Madeleine, J. -B.
Other Authors: Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL), Department of Geological Sciences Providence, Brown University
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2013
Subjects:
Online Access:https://hal.science/hal-01092295
https://doi.org/10.1016/j.icarus.2012.09.036
id ftecoleponts:oai:HAL:hal-01092295v1
record_format openpolar
spelling ftecoleponts:oai:HAL:hal-01092295v1 2024-06-09T07:46:42+00:00 Global modelling of the early martian climate under a denser CO2 atmosphere: Water cycle and ice evolution Wordsworth, R. Forget, F. Millour, E. Head, J. W. Charnay, B. Madeleine, J. -B. Laboratoire de Météorologie Dynamique (UMR 8539) (LMD) Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL) Department of Geological Sciences Providence Brown University 2013 https://hal.science/hal-01092295 https://doi.org/10.1016/j.icarus.2012.09.036 en eng HAL CCSD Elsevier info:eu-repo/semantics/altIdentifier/doi/10.1016/j.icarus.2012.09.036 hal-01092295 https://hal.science/hal-01092295 doi:10.1016/j.icarus.2012.09.036 ISSN: 0019-1035 EISSN: 1090-2643 Icarus https://hal.science/hal-01092295 Icarus, 2013, 222 (1), pp.1-19. ⟨10.1016/j.icarus.2012.09.036⟩ [SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology [SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere [SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology info:eu-repo/semantics/article Journal articles 2013 ftecoleponts https://doi.org/10.1016/j.icarus.2012.09.036 2024-05-16T13:34:51Z International audience We discuss 3D global simulations of the early martian climate that we have performed assuming a faint young Sun and denser CO2 atmosphere. We include a self-consistent representation of the water cycle, with atmosphere-surface interactions, atmospheric transport, and the radiative effects of CO2 and H2O gas and clouds taken into account. We find that for atmospheric pressures greater than a fraction of a bar, the adiabatic cooling effect causes temperatures in the southern highland valley network regions to fall significantly below the global average. Long-term climate evolution simulations indicate that in these circumstances, water ice is transported to the highlands from low-lying regions for a wide range of orbital obliquities, regardless of the extent of the Tharsis bulge. In addition, an extended water ice cap forms on the southern pole, approximately corresponding to the location of the Noachian/Hesperian era Dorsa Argentea Formation. Even for a multiple-bar CO2 atmosphere, conditions are too cold to allow long-term surface liquid water. Limited melting occurs on warm summer days in some locations, but only for surface albedo and thermal inertia conditions that may be unrealistic for water ice. Nonetheless, meteorite impacts and volcanism could potentially cause intense episodic melting under such conditions. Because ice migration to higher altitudes is a robust mechanism for recharging highland water sources after such events, we suggest that this globally sub-zero, 'icy highlands' scenario for the late Noachian climate may be sufficient to explain most of the fluvial geology without the need to invoke additional long-term warming mechanisms or an early warm, wet Mars. (C) 2012 Elsevier Inc. All rights reserved. Article in Journal/Newspaper Ice cap École des Ponts ParisTech: HAL Icarus 222 1 1 19
institution Open Polar
collection École des Ponts ParisTech: HAL
op_collection_id ftecoleponts
language English
topic [SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean
Atmosphere
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology
spellingShingle [SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean
Atmosphere
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology
Wordsworth, R.
Forget, F.
Millour, E.
Head, J. W.
Charnay, B.
Madeleine, J. -B.
Global modelling of the early martian climate under a denser CO2 atmosphere: Water cycle and ice evolution
topic_facet [SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean
Atmosphere
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology
description International audience We discuss 3D global simulations of the early martian climate that we have performed assuming a faint young Sun and denser CO2 atmosphere. We include a self-consistent representation of the water cycle, with atmosphere-surface interactions, atmospheric transport, and the radiative effects of CO2 and H2O gas and clouds taken into account. We find that for atmospheric pressures greater than a fraction of a bar, the adiabatic cooling effect causes temperatures in the southern highland valley network regions to fall significantly below the global average. Long-term climate evolution simulations indicate that in these circumstances, water ice is transported to the highlands from low-lying regions for a wide range of orbital obliquities, regardless of the extent of the Tharsis bulge. In addition, an extended water ice cap forms on the southern pole, approximately corresponding to the location of the Noachian/Hesperian era Dorsa Argentea Formation. Even for a multiple-bar CO2 atmosphere, conditions are too cold to allow long-term surface liquid water. Limited melting occurs on warm summer days in some locations, but only for surface albedo and thermal inertia conditions that may be unrealistic for water ice. Nonetheless, meteorite impacts and volcanism could potentially cause intense episodic melting under such conditions. Because ice migration to higher altitudes is a robust mechanism for recharging highland water sources after such events, we suggest that this globally sub-zero, 'icy highlands' scenario for the late Noachian climate may be sufficient to explain most of the fluvial geology without the need to invoke additional long-term warming mechanisms or an early warm, wet Mars. (C) 2012 Elsevier Inc. All rights reserved.
author2 Laboratoire de Météorologie Dynamique (UMR 8539) (LMD)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris
École normale supérieure - Paris (ENS-PSL)
Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL)
Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)
Department of Geological Sciences Providence
Brown University
format Article in Journal/Newspaper
author Wordsworth, R.
Forget, F.
Millour, E.
Head, J. W.
Charnay, B.
Madeleine, J. -B.
author_facet Wordsworth, R.
Forget, F.
Millour, E.
Head, J. W.
Charnay, B.
Madeleine, J. -B.
author_sort Wordsworth, R.
title Global modelling of the early martian climate under a denser CO2 atmosphere: Water cycle and ice evolution
title_short Global modelling of the early martian climate under a denser CO2 atmosphere: Water cycle and ice evolution
title_full Global modelling of the early martian climate under a denser CO2 atmosphere: Water cycle and ice evolution
title_fullStr Global modelling of the early martian climate under a denser CO2 atmosphere: Water cycle and ice evolution
title_full_unstemmed Global modelling of the early martian climate under a denser CO2 atmosphere: Water cycle and ice evolution
title_sort global modelling of the early martian climate under a denser co2 atmosphere: water cycle and ice evolution
publisher HAL CCSD
publishDate 2013
url https://hal.science/hal-01092295
https://doi.org/10.1016/j.icarus.2012.09.036
genre Ice cap
genre_facet Ice cap
op_source ISSN: 0019-1035
EISSN: 1090-2643
Icarus
https://hal.science/hal-01092295
Icarus, 2013, 222 (1), pp.1-19. ⟨10.1016/j.icarus.2012.09.036⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1016/j.icarus.2012.09.036
hal-01092295
https://hal.science/hal-01092295
doi:10.1016/j.icarus.2012.09.036
op_doi https://doi.org/10.1016/j.icarus.2012.09.036
container_title Icarus
container_volume 222
container_issue 1
container_start_page 1
op_container_end_page 19
_version_ 1801376660704985088