Contribution of changes in opal productivity and nutrient distribution in the coastal upwelling systems to late Pliocene/early Pleistocene climate cooling

International audience The global late Pliocene/early Pleistocene cooling (~3.0-2.0 million years ago, Ma) concurred with extremely high diatom and biogenic opal production in most of the major coastal upwelling regions. This phenomenon was particularly pronounced in the Benguela Upwelling System (B...

Full description

Bibliographic Details
Published in:Climate of the Past
Main Authors: Etourneau, Johan, Ehlert, Claudia, Frank, M., Martinez, P., Schneider, Ralf
Other Authors: Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X), Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X), Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut für Geowissenschaften Kiel, Christian-Albrechts-Universität zu Kiel = Christian-Albrechts University of Kiel = Université Christian-Albrechts de Kiel (CAU), Helmholtz Centre for Ocean Research Kiel (GEOMAR), Environnements et Paléoenvironnements OCéaniques (EPOC), Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École Pratique des Hautes Études (EPHE), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), The publication of this article is financed by CNRS-INSU
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2012
Subjects:
Online Access:https://hal.science/hal-01858967
https://hal.science/hal-01858967/document
https://hal.science/hal-01858967/file/cp-8-1435-2012.pdf
https://doi.org/10.5194/cp-8-1435-2012
Description
Summary:International audience The global late Pliocene/early Pleistocene cooling (~3.0-2.0 million years ago, Ma) concurred with extremely high diatom and biogenic opal production in most of the major coastal upwelling regions. This phenomenon was particularly pronounced in the Benguela Upwelling System (BUS), off Namibia, where it is known as the Matuyama Diatom Maximum (MDM). Our study focuses on a new diatom silicon isotope (δ 30 Si) record covering the MDM in the BUS. Unexpectedly, the variations in δ 30 Si signal follow biogenic opal content, whereby the highest δ 30 Si values correspond to the highest biogenic opal content. We interpret the higher δ 30 Si values during the MDM as a result of a stronger degree of silicate utilization in the surface waters caused by high productivity of mat-forming diatom species. This was most likely promoted by weak upwelling intensity dominating the BUS during the Plio/Pleistocene cooling combined with a large silicate supply derived from a strong Southern Ocean nutrient leakage responding to the expansion of Antarctic ice cover and the resulting stratification of the polar ocean 3.0-2.7 Ma ago. A similar scenario is hypothesized for other major coastal upwelling systems (e.g. off California) during this time interval, suggesting that the efficiency of the biological carbon pump was probably sufficiently enhanced in these regions during the MDM to have significantly increased the transport of atmospheric CO 2 to the deep ocean. In addition, the coeval extension of the area of surface water stratification in both the Southern Ocean and the North Pacific, which decreased CO 2 release to the atmosphere, led to further enhanced atmospheric CO 2 drawn-down and thus contributed significantly to late Pliocene/early Pleistocene cooling.