Non-Stoichiometric crystallization, a thermodynamic flash approach: case of mixed gas hydrates

National audience Clathrate Hydrates are ice-like compounds that can be formed under high pressure and low temperature. They are composed of water and small molecules of ‘’gas’’. Hence they are usually called gas hydrates. They are involved in a significant issue of the oil industry, the hydrate plu...

Full description

Bibliographic Details
Main Authors: Bouillot, Baptiste, Herri, Jean-Michel
Other Authors: Laboratoire Georges Friedel (LGF-ENSMSE), École des Mines de Saint-Étienne (Mines Saint-Étienne MSE), Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT)-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Département PROcédés Poudres, Interfaces, Cristallisation et Ecoulements (PROPICE-ENSMSE), Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT)-SPIN, Centre Sciences des Processus Industriels et Naturels (SPIN-ENSMSE), Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT), L'équipe Cristallogénèse du Laboratoire de Sciences et Méthodes Séparatives (SMS) - Université de Rouen, Université de Rouen, Pr. Samuel Petit, Dr. Yohann Cartigny
Format: Conference Object
Language:French
Published: HAL CCSD 2016
Subjects:
Ice
Online Access:https://hal.science/hal-01327031
https://hal.science/hal-01327031/document
https://hal.science/hal-01327031/file/B%20Bouillot%20Cristal%208%202016.pdf
id ftecoleminesstet:oai:HAL:hal-01327031v1
record_format openpolar
institution Open Polar
collection Mines de Saint-Etienne: Open Archive (HAL)
op_collection_id ftecoleminesstet
language French
topic Crystallization
gas hydrates
thermodynamics
flash calculations
Cristallisation
Modélisation
Flash thermodynamique
hydrates de gaz
[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering
spellingShingle Crystallization
gas hydrates
thermodynamics
flash calculations
Cristallisation
Modélisation
Flash thermodynamique
hydrates de gaz
[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering
Bouillot, Baptiste
Herri, Jean-Michel
Non-Stoichiometric crystallization, a thermodynamic flash approach: case of mixed gas hydrates
topic_facet Crystallization
gas hydrates
thermodynamics
flash calculations
Cristallisation
Modélisation
Flash thermodynamique
hydrates de gaz
[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering
description National audience Clathrate Hydrates are ice-like compounds that can be formed under high pressure and low temperature. They are composed of water and small molecules of ‘’gas’’. Hence they are usually called gas hydrates. They are involved in a significant issue of the oil industry, the hydrate plugs in pipelines (flow-assurance), as well as gas capture and storage, air conditioning… Moreover, methane hydrates can be found in sediments in deep sea and permafrost. That is why they are also considered as a significant methane resource on earth.Since they are non-stoichiometric compounds, it is difficult to model these crystals in process simulation. Furthermore, the speed of crystallization seems to influence the hydrate composition. Therefore, a modeling of the hydrate crystallization taking into account the history of the solid formation could be an interesting tool.In this work, a successive thermodynamic flash approach is presented according to two different hypotheses: heterogeneous hydrate phase during the crystal growth, and homogeneous hydrate phase. The main idea of these procedures is to discretize the crystal growth while the hydrate volume is increasing. Hence, three phase flash calculations are performed on the system. Each time, the previous amount of hydrate that has been formed is removed (at each iteration).The results of such algorithms are compared to batch experiments at low and quick crystallization rates ( Duyen et al. 2016). The flash algorithms at given temperature (only one degree of freedom) give accurate results. The predicted final pressure and the hydrate volume are calculated within 7% accuracy. Moreover, the flash calculation results with no hydrate reorganization are closer to experiments at quick crystallization rate, whereas the experiment at low crystallization rate is better predicted with the second hypothesis (reorganization of the hydrate phase during growth). This work and its results provide a more realistic and comprehensive view of gas hydrate crystallization (more ...
author2 Laboratoire Georges Friedel (LGF-ENSMSE)
École des Mines de Saint-Étienne (Mines Saint-Étienne MSE)
Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT)-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)
Département PROcédés Poudres, Interfaces, Cristallisation et Ecoulements (PROPICE-ENSMSE)
Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT)-SPIN
Centre Sciences des Processus Industriels et Naturels (SPIN-ENSMSE)
Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT)
L'équipe Cristallogénèse du Laboratoire de Sciences et Méthodes Séparatives (SMS) - Université de Rouen
Université de Rouen
Pr. Samuel Petit
Dr. Yohann Cartigny
format Conference Object
author Bouillot, Baptiste
Herri, Jean-Michel
author_facet Bouillot, Baptiste
Herri, Jean-Michel
author_sort Bouillot, Baptiste
title Non-Stoichiometric crystallization, a thermodynamic flash approach: case of mixed gas hydrates
title_short Non-Stoichiometric crystallization, a thermodynamic flash approach: case of mixed gas hydrates
title_full Non-Stoichiometric crystallization, a thermodynamic flash approach: case of mixed gas hydrates
title_fullStr Non-Stoichiometric crystallization, a thermodynamic flash approach: case of mixed gas hydrates
title_full_unstemmed Non-Stoichiometric crystallization, a thermodynamic flash approach: case of mixed gas hydrates
title_sort non-stoichiometric crystallization, a thermodynamic flash approach: case of mixed gas hydrates
publisher HAL CCSD
publishDate 2016
url https://hal.science/hal-01327031
https://hal.science/hal-01327031/document
https://hal.science/hal-01327031/file/B%20Bouillot%20Cristal%208%202016.pdf
op_coverage Mont-Saint-Aignan, France
genre Ice
permafrost
genre_facet Ice
permafrost
op_source Cristal Rouen 2016 - 8 ème édition du colloque Cristallisation et Précipitation Industrielles
https://hal.science/hal-01327031
Cristal Rouen 2016 - 8 ème édition du colloque Cristallisation et Précipitation Industrielles, L'équipe Cristallogénèse du Laboratoire de Sciences et Méthodes Séparatives (SMS) - Université de Rouen; Université de Rouen May 2016, Mont-Saint-Aignan, France. pp.13-1 à 13-8
http://cristal8.univ-rouen.fr/node/4
op_relation hal-01327031
https://hal.science/hal-01327031
https://hal.science/hal-01327031/document
https://hal.science/hal-01327031/file/B%20Bouillot%20Cristal%208%202016.pdf
op_rights info:eu-repo/semantics/OpenAccess
_version_ 1802645436777889792
spelling ftecoleminesstet:oai:HAL:hal-01327031v1 2024-06-23T07:53:40+00:00 Non-Stoichiometric crystallization, a thermodynamic flash approach: case of mixed gas hydrates Cristallisation non-stoechiométrique et modélisation d’un flash thermodynamique : Cas des hydrates mixtes de gaz Bouillot, Baptiste Herri, Jean-Michel Laboratoire Georges Friedel (LGF-ENSMSE) École des Mines de Saint-Étienne (Mines Saint-Étienne MSE) Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT)-Université de Lyon-Centre National de la Recherche Scientifique (CNRS) Département PROcédés Poudres, Interfaces, Cristallisation et Ecoulements (PROPICE-ENSMSE) Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT)-SPIN Centre Sciences des Processus Industriels et Naturels (SPIN-ENSMSE) Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT) L'équipe Cristallogénèse du Laboratoire de Sciences et Méthodes Séparatives (SMS) - Université de Rouen Université de Rouen Pr. Samuel Petit Dr. Yohann Cartigny Mont-Saint-Aignan, France 2016-05-26 https://hal.science/hal-01327031 https://hal.science/hal-01327031/document https://hal.science/hal-01327031/file/B%20Bouillot%20Cristal%208%202016.pdf fr fre HAL CCSD SFGP - Diffusion Lavoisier Technique et documentation hal-01327031 https://hal.science/hal-01327031 https://hal.science/hal-01327031/document https://hal.science/hal-01327031/file/B%20Bouillot%20Cristal%208%202016.pdf info:eu-repo/semantics/OpenAccess Cristal Rouen 2016 - 8 ème édition du colloque Cristallisation et Précipitation Industrielles https://hal.science/hal-01327031 Cristal Rouen 2016 - 8 ème édition du colloque Cristallisation et Précipitation Industrielles, L'équipe Cristallogénèse du Laboratoire de Sciences et Méthodes Séparatives (SMS) - Université de Rouen; Université de Rouen May 2016, Mont-Saint-Aignan, France. pp.13-1 à 13-8 http://cristal8.univ-rouen.fr/node/4 Crystallization gas hydrates thermodynamics flash calculations Cristallisation Modélisation Flash thermodynamique hydrates de gaz [SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering info:eu-repo/semantics/conferenceObject Conference papers 2016 ftecoleminesstet 2024-06-03T14:16:59Z National audience Clathrate Hydrates are ice-like compounds that can be formed under high pressure and low temperature. They are composed of water and small molecules of ‘’gas’’. Hence they are usually called gas hydrates. They are involved in a significant issue of the oil industry, the hydrate plugs in pipelines (flow-assurance), as well as gas capture and storage, air conditioning… Moreover, methane hydrates can be found in sediments in deep sea and permafrost. That is why they are also considered as a significant methane resource on earth.Since they are non-stoichiometric compounds, it is difficult to model these crystals in process simulation. Furthermore, the speed of crystallization seems to influence the hydrate composition. Therefore, a modeling of the hydrate crystallization taking into account the history of the solid formation could be an interesting tool.In this work, a successive thermodynamic flash approach is presented according to two different hypotheses: heterogeneous hydrate phase during the crystal growth, and homogeneous hydrate phase. The main idea of these procedures is to discretize the crystal growth while the hydrate volume is increasing. Hence, three phase flash calculations are performed on the system. Each time, the previous amount of hydrate that has been formed is removed (at each iteration).The results of such algorithms are compared to batch experiments at low and quick crystallization rates ( Duyen et al. 2016). The flash algorithms at given temperature (only one degree of freedom) give accurate results. The predicted final pressure and the hydrate volume are calculated within 7% accuracy. Moreover, the flash calculation results with no hydrate reorganization are closer to experiments at quick crystallization rate, whereas the experiment at low crystallization rate is better predicted with the second hypothesis (reorganization of the hydrate phase during growth). This work and its results provide a more realistic and comprehensive view of gas hydrate crystallization (more ... Conference Object Ice permafrost Mines de Saint-Etienne: Open Archive (HAL)