Van der Waals interactions in systems involving gas hydrates

International audience The goal of this work is to quantify the Van der Waals interactions in systems involving gas hydrates. Gas hydrates are crystalline compounds that are often encountered in oil and gas industry, where they pose problems (pipeline plugging. etc.) and represent opportunities (ene...

Full description

Bibliographic Details
Published in:Fluid Phase Equilibria
Main Authors: Bonnefoy, Olivier, Gruy, Frédéric, Herri, Jean-Michel
Other Authors: Département Poudres et Matériaux Multi-Composants (P2MC-ENSMSE), École des Mines de Saint-Étienne (Mines Saint-Étienne MSE), Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT)-SPIN, Centre Sciences des Processus Industriels et Naturels (SPIN-ENSMSE), Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT), Laboratoire des Procédés en Milieux Granulaires (LPMG-EMSE), Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT)-Centre National de la Recherche Scientifique (CNRS), Département Géochimie, environnement, écoulement, réacteurs industriels et cristallisation (GENERIC-ENSMSE)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2005
Subjects:
Online Access:https://hal-emse.ccsd.cnrs.fr/emse-00497660
https://doi.org/10.1016/j.fluid.2005.02.004
id ftecoleminesstet:oai:HAL:emse-00497660v1
record_format openpolar
spelling ftecoleminesstet:oai:HAL:emse-00497660v1 2023-06-11T04:14:01+02:00 Van der Waals interactions in systems involving gas hydrates Bonnefoy, Olivier Gruy, Frédéric Herri, Jean-Michel Département Poudres et Matériaux Multi-Composants (P2MC-ENSMSE) École des Mines de Saint-Étienne (Mines Saint-Étienne MSE) Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT)-SPIN Centre Sciences des Processus Industriels et Naturels (SPIN-ENSMSE) Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT) Laboratoire des Procédés en Milieux Granulaires (LPMG-EMSE) Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT)-Centre National de la Recherche Scientifique (CNRS) Département Géochimie, environnement, écoulement, réacteurs industriels et cristallisation (GENERIC-ENSMSE) 2005 https://hal-emse.ccsd.cnrs.fr/emse-00497660 https://doi.org/10.1016/j.fluid.2005.02.004 en eng HAL CCSD Elsevier info:eu-repo/semantics/altIdentifier/doi/10.1016/j.fluid.2005.02.004 emse-00497660 https://hal-emse.ccsd.cnrs.fr/emse-00497660 doi:10.1016/j.fluid.2005.02.004 ISSN: 0378-3812 Fluid Phase Equilibria https://hal-emse.ccsd.cnrs.fr/emse-00497660 Fluid Phase Equilibria, 2005, 231 (2), pp.176-187. ⟨10.1016/j.fluid.2005.02.004⟩ methane gas hydrate Hamaker constants agglomeration dielectric response function Van der Waals interaction potential [SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering info:eu-repo/semantics/article Journal articles 2005 ftecoleminesstet https://doi.org/10.1016/j.fluid.2005.02.004 2023-04-22T18:12:28Z International audience The goal of this work is to quantify the Van der Waals interactions in systems involving gas hydrates. Gas hydrates are crystalline compounds that are often encountered in oil and gas industry, where they pose problems (pipeline plugging. etc.) and represent opportunities (energy resources. gas transport, etc.). We focus on methane hydrate, which is the most common one. and calculate its Hamaker constant. Two methods are used and lead to results in good agreement. The Hamaker, microscopic, approach gives a first estimate of the Hamaker constant of 4.59 x 10(-21) J for the hydrate-water-hydrate system. The Lifshitz, macroscopic, method used in combination with the Kramers-Kronig relationship gives a value of 8.25 x 10(-21) J. The Hamaker constant is also computed for three phases systems (gas hydrate clathrate and liquid water with ice, dodecane, quartz, sapphire, Teflon, metals). The interaction potential in different geometrical configurations is then calculated by a hybrid method and various cases of practical interest are studied. Article in Journal/Newspaper Methane hydrate Mines de Saint-Etienne: Open Archive (HAL) Fluid Phase Equilibria 231 2 176 187
institution Open Polar
collection Mines de Saint-Etienne: Open Archive (HAL)
op_collection_id ftecoleminesstet
language English
topic methane gas hydrate
Hamaker constants
agglomeration
dielectric response function
Van der Waals interaction potential
[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering
spellingShingle methane gas hydrate
Hamaker constants
agglomeration
dielectric response function
Van der Waals interaction potential
[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering
Bonnefoy, Olivier
Gruy, Frédéric
Herri, Jean-Michel
Van der Waals interactions in systems involving gas hydrates
topic_facet methane gas hydrate
Hamaker constants
agglomeration
dielectric response function
Van der Waals interaction potential
[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering
description International audience The goal of this work is to quantify the Van der Waals interactions in systems involving gas hydrates. Gas hydrates are crystalline compounds that are often encountered in oil and gas industry, where they pose problems (pipeline plugging. etc.) and represent opportunities (energy resources. gas transport, etc.). We focus on methane hydrate, which is the most common one. and calculate its Hamaker constant. Two methods are used and lead to results in good agreement. The Hamaker, microscopic, approach gives a first estimate of the Hamaker constant of 4.59 x 10(-21) J for the hydrate-water-hydrate system. The Lifshitz, macroscopic, method used in combination with the Kramers-Kronig relationship gives a value of 8.25 x 10(-21) J. The Hamaker constant is also computed for three phases systems (gas hydrate clathrate and liquid water with ice, dodecane, quartz, sapphire, Teflon, metals). The interaction potential in different geometrical configurations is then calculated by a hybrid method and various cases of practical interest are studied.
author2 Département Poudres et Matériaux Multi-Composants (P2MC-ENSMSE)
École des Mines de Saint-Étienne (Mines Saint-Étienne MSE)
Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT)-SPIN
Centre Sciences des Processus Industriels et Naturels (SPIN-ENSMSE)
Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT)
Laboratoire des Procédés en Milieux Granulaires (LPMG-EMSE)
Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT)-Centre National de la Recherche Scientifique (CNRS)
Département Géochimie, environnement, écoulement, réacteurs industriels et cristallisation (GENERIC-ENSMSE)
format Article in Journal/Newspaper
author Bonnefoy, Olivier
Gruy, Frédéric
Herri, Jean-Michel
author_facet Bonnefoy, Olivier
Gruy, Frédéric
Herri, Jean-Michel
author_sort Bonnefoy, Olivier
title Van der Waals interactions in systems involving gas hydrates
title_short Van der Waals interactions in systems involving gas hydrates
title_full Van der Waals interactions in systems involving gas hydrates
title_fullStr Van der Waals interactions in systems involving gas hydrates
title_full_unstemmed Van der Waals interactions in systems involving gas hydrates
title_sort van der waals interactions in systems involving gas hydrates
publisher HAL CCSD
publishDate 2005
url https://hal-emse.ccsd.cnrs.fr/emse-00497660
https://doi.org/10.1016/j.fluid.2005.02.004
genre Methane hydrate
genre_facet Methane hydrate
op_source ISSN: 0378-3812
Fluid Phase Equilibria
https://hal-emse.ccsd.cnrs.fr/emse-00497660
Fluid Phase Equilibria, 2005, 231 (2), pp.176-187. ⟨10.1016/j.fluid.2005.02.004⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1016/j.fluid.2005.02.004
emse-00497660
https://hal-emse.ccsd.cnrs.fr/emse-00497660
doi:10.1016/j.fluid.2005.02.004
op_doi https://doi.org/10.1016/j.fluid.2005.02.004
container_title Fluid Phase Equilibria
container_volume 231
container_issue 2
container_start_page 176
op_container_end_page 187
_version_ 1768391512719097856