Event reconstruction for KM3NeT/ORCA using convolutional neural networks
International audience The KM3NeT research infrastructure is currently under construction at two locations in the Mediterranean Sea. The KM3NeT/ORCA water-Cherenkov neutrino detector off the French coast will instrument several megatons of seawater with photosensors. Its main objective is the determ...
Published in: | Journal of Instrumentation |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Other Authors: | , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2020
|
Subjects: | |
Online Access: | https://hal.science/hal-03178773 https://hal.science/hal-03178773/document https://hal.science/hal-03178773/file/Aiello_2020_J._Inst._15_P10005.pdf https://doi.org/10.1088/1748-0221/15/10/P10005 |
id |
ftecoleminesnant:oai:HAL:hal-03178773v1 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
Ecole des Mines de Nantes: HAL |
op_collection_id |
ftecoleminesnant |
language |
English |
topic |
Cherenkov detectors Large detector systems for particle and astroparticle physics Neutrino detectors Performance of High Energy Physics Detectors neutrino: detector neutrino: interaction neutrino: atmosphere neutrino: mass radiation: Cherenkov vertex: primary KM3NeT neural network Cherenkov counter: water performance spatial distribution charged particle photomultiplier background network [PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] |
spellingShingle |
Cherenkov detectors Large detector systems for particle and astroparticle physics Neutrino detectors Performance of High Energy Physics Detectors neutrino: detector neutrino: interaction neutrino: atmosphere neutrino: mass radiation: Cherenkov vertex: primary KM3NeT neural network Cherenkov counter: water performance spatial distribution charged particle photomultiplier background network [PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] Aiello, S. Albert, A. Alves Garre, S. Aly, Z. Ameli, F. Andre, M. Androulakis, G. Anghinolfi, M. Anguita, M. Anton, G. Ardid, M. Aublin, J. Bagatelas, C. Barbarino, G. Baret, B. Basegmez Du Pree, S. Bendahman, M. Berbee, E. van den Berg, A.M. Bertin, V. Biagi, S. Biagioni, A. Bissinger, M. Boettcher, M. Boumaaza, J. Bouta, M. Bouwhuis, M. Bozza, C. Brânzaş, H. Bruijn, R. Brunner, J. Buis, E. Buompane, R. Busto, J. Caiffi, B. Calvo, D. Capone, A. Carretero, V. Castaldi, P. Celli, S. Chabab, M. Chau, N. Chen, A. Cherubini, S. Chiarella, V. Chiarusi, T. Circella, M. Cocimano, R. Coelho, J.A.B. Coleiro, A. Colomer Molla, M. Coniglione, R. Coyle, P. Creusot, A. Cuttone, G. d'Onofrio, A. Dallier, R. de Palma, M. Di Palma, I. Díaz, A.F. Diego-Tortosa, D. Distefano, C. Domi, A. Donà, R. Donzaud, C. Dornic, D. Dörr, M. Drouhin, D. Eberl, T. Eddyamoui, A. van Eeden, T. van Eijk, D. Bojaddaini, I. El Elsaesser, D. Enzenhöfer, A. Roselló, V. Espinosa Fermani, P. Ferrara, G. Filipović, M.D. Filippini, F. Fusco, L.A. Gabella, O. Gal, T. Soto, A. Garcia Garufi, F. Gatelet, Y. Geisselbrecht, N. Gialanella, L. Giorgio, E. Gozzini, S.R. Gracia, R. Graf, K. Grasso, D. Grella, G. Guderian, D. Guidi, C. Hallmann, S. Hamdaoui, H. van Haren, H. Heijboer, A. Hekalo, A. Hernández-Rey, J.J. Hofestädt, J. Huang, F. Ibnsalih, W. Idrissi Illuminati, G. James, C.W. de Jong, M. de Jong, P. Jung, B.J. Kadler, M. Kalaczyński, P. Kalekin, O. Katz, U.F. Khan Chowdhury, N.R Kistauri, G. van Der Knaap, F. Koffeman, E.N. Kooijman, P. Kouchner, A. Kreter, M. Kulikovskiy, V. Lahmann, R. Larosa, G. Le Breton, R. Leonardi, O. Leone, F. Leonora, E. Levi, G. Lincetto, M. Lindsey Clark, M. Lipreau, T. Lonardo, A. Longhitano, F. Lopez-Coto, D. Maderer, L. Mańczak, J. Mannheim, K. Margiotta, A. Marinelli, A. Markou, C. Martin, L. Martínez-Mora, J.A. Martini, A. Marzaioli, F. Mastroianni, S. Mazzou, S. Melis, K.W. Miele, G. Migliozzi, P. Migneco, E. Mijakowski, P. Miranda, L.S. Mollo, C.M. Morganti, M. Moser, M. Moussa, A. Muller, R. Musumeci, M. Nauta, L. Navas, S. Nicolau, C.A. Ó Fearraigh, B. Organokov, M. Orlando, A. Papalashvili, G. Papaleo, R. Pastore, C. Păun, A.M. Păvălaş, G.E. Pellegrino, C. Perrin-Terrin, M. Piattelli, P. Pieterse, C. Pikounis, K. Pisanti, O. Poirè, C. Popa, V. Post, M. Pradier, T. Pühlhofer, G. Pulvirenti, S. Rabyang, O. Raffaelli, F. Randazzo, N. Rapicavoli, A. Razzaque, S. Real, D. Reck, S. Riccobene, G. Richer, M. Rivoire, S. Rovelli, A. Salesa Greus, F. Samtleben, D.F.E. Sánchez Losa, A. Sanguineti, M. Santangelo, A. Santonocito, D. Sapienza, P. Schnabel, J. Seneca, J. Sgura, I. Shanidze, R. Sharma, A. Simeone, F. Sinopoulou, A. Spisso, B. Spurio, M. Stavropoulos, D. Steijger, J. Stellacci, S.M. Taiuti, M. Tayalati, Y. Tenllado, E. Thakore, T. Tingay, S. Tzamariudaki, E. Tzanetatos, D. van Elewyck, V. Vannoye, G. Vasileiadis, George Versari, F. Viola, S. Vivolo, D. de Wasseige, G. Wilms, J. Wojaczyński, R. de Wolf, E. Zaborov, D. Zavatarelli, S. Zegarelli, A. Zito, D. Zornoza, J.D. Zúñiga, J. Zywucka, N. Event reconstruction for KM3NeT/ORCA using convolutional neural networks |
topic_facet |
Cherenkov detectors Large detector systems for particle and astroparticle physics Neutrino detectors Performance of High Energy Physics Detectors neutrino: detector neutrino: interaction neutrino: atmosphere neutrino: mass radiation: Cherenkov vertex: primary KM3NeT neural network Cherenkov counter: water performance spatial distribution charged particle photomultiplier background network [PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] |
description |
International audience The KM3NeT research infrastructure is currently under construction at two locations in the Mediterranean Sea. The KM3NeT/ORCA water-Cherenkov neutrino detector off the French coast will instrument several megatons of seawater with photosensors. Its main objective is the determination of the neutrino mass ordering. This work aims at demonstrating the general applicability of deep convolutional neural networks to neutrino telescopes, using simulated datasets for the KM3NeT/ORCA detector as an example. To this end, the networks are employed to achieve reconstruction and classification tasks that constitute an alternative to the analysis pipeline presented for KM3NeT/ORCA in the KM3NeT Letter of Intent. They are used to infer event reconstruction estimates for the energy, the direction, and the interaction point of incident neutrinos. The spatial distribution of Cherenkov light generated by charged particles induced in neutrino interactions is classified as shower- or track-like, and the main background processes associated with the detection of atmospheric neutrinos are recognized. Performance comparisons to machine-learning classification and maximum-likelihood reconstruction algorithms previously developed for KM3NeT/ORCA are provided. It is shown that this application of deep convolutional neural networks to simulated datasets for a large-volume neutrino telescope yields competitive reconstruction results and performance improvements with respect to classical approaches. |
author2 |
Istituto Nazionale di Fisica Nucleare (INFN) Groupe de Recherche en Physique des Hautes Energies (GRPHE) Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-IUT de Colmar Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA)) Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3) Centre de Physique des Particules de Marseille (CPPM) Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS) AstroParticule et Cosmologie (APC (UMR_7164)) Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité) Laboratoire de physique subatomique et des technologies associées (SUBATECH) Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST) Université de Nantes (UN)-Université de Nantes (UN)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique) Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT) Institut Pluridisciplinaire Hubert Curien (IPHC) Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS) Laboratoire Univers et Particules de Montpellier (LUPM) Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS) Institut universitaire de France (IUF) Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.) KM3NeT ANR-18-IDEX-0001,Université de Paris,Université de Paris(2018) ANR-15-CE31-0020,DAEMONS,Démonstration de la possibilité d'établir l'ordonnancement des masses de neutrinos dans la mer(2015) ANR-10-LABX-0023,UnivEarthS,Earth - Planets - Universe: observation, modeling, transfer(2010) European Project: 713673,INPhINIT |
format |
Article in Journal/Newspaper |
author |
Aiello, S. Albert, A. Alves Garre, S. Aly, Z. Ameli, F. Andre, M. Androulakis, G. Anghinolfi, M. Anguita, M. Anton, G. Ardid, M. Aublin, J. Bagatelas, C. Barbarino, G. Baret, B. Basegmez Du Pree, S. Bendahman, M. Berbee, E. van den Berg, A.M. Bertin, V. Biagi, S. Biagioni, A. Bissinger, M. Boettcher, M. Boumaaza, J. Bouta, M. Bouwhuis, M. Bozza, C. Brânzaş, H. Bruijn, R. Brunner, J. Buis, E. Buompane, R. Busto, J. Caiffi, B. Calvo, D. Capone, A. Carretero, V. Castaldi, P. Celli, S. Chabab, M. Chau, N. Chen, A. Cherubini, S. Chiarella, V. Chiarusi, T. Circella, M. Cocimano, R. Coelho, J.A.B. Coleiro, A. Colomer Molla, M. Coniglione, R. Coyle, P. Creusot, A. Cuttone, G. d'Onofrio, A. Dallier, R. de Palma, M. Di Palma, I. Díaz, A.F. Diego-Tortosa, D. Distefano, C. Domi, A. Donà, R. Donzaud, C. Dornic, D. Dörr, M. Drouhin, D. Eberl, T. Eddyamoui, A. van Eeden, T. van Eijk, D. Bojaddaini, I. El Elsaesser, D. Enzenhöfer, A. Roselló, V. Espinosa Fermani, P. Ferrara, G. Filipović, M.D. Filippini, F. Fusco, L.A. Gabella, O. Gal, T. Soto, A. Garcia Garufi, F. Gatelet, Y. Geisselbrecht, N. Gialanella, L. Giorgio, E. Gozzini, S.R. Gracia, R. Graf, K. Grasso, D. Grella, G. Guderian, D. Guidi, C. Hallmann, S. Hamdaoui, H. van Haren, H. Heijboer, A. Hekalo, A. Hernández-Rey, J.J. Hofestädt, J. Huang, F. Ibnsalih, W. Idrissi Illuminati, G. James, C.W. de Jong, M. de Jong, P. Jung, B.J. Kadler, M. Kalaczyński, P. Kalekin, O. Katz, U.F. Khan Chowdhury, N.R Kistauri, G. van Der Knaap, F. Koffeman, E.N. Kooijman, P. Kouchner, A. Kreter, M. Kulikovskiy, V. Lahmann, R. Larosa, G. Le Breton, R. Leonardi, O. Leone, F. Leonora, E. Levi, G. Lincetto, M. Lindsey Clark, M. Lipreau, T. Lonardo, A. Longhitano, F. Lopez-Coto, D. Maderer, L. Mańczak, J. Mannheim, K. Margiotta, A. Marinelli, A. Markou, C. Martin, L. Martínez-Mora, J.A. Martini, A. Marzaioli, F. Mastroianni, S. Mazzou, S. Melis, K.W. Miele, G. Migliozzi, P. Migneco, E. Mijakowski, P. Miranda, L.S. Mollo, C.M. Morganti, M. Moser, M. Moussa, A. Muller, R. Musumeci, M. Nauta, L. Navas, S. Nicolau, C.A. Ó Fearraigh, B. Organokov, M. Orlando, A. Papalashvili, G. Papaleo, R. Pastore, C. Păun, A.M. Păvălaş, G.E. Pellegrino, C. Perrin-Terrin, M. Piattelli, P. Pieterse, C. Pikounis, K. Pisanti, O. Poirè, C. Popa, V. Post, M. Pradier, T. Pühlhofer, G. Pulvirenti, S. Rabyang, O. Raffaelli, F. Randazzo, N. Rapicavoli, A. Razzaque, S. Real, D. Reck, S. Riccobene, G. Richer, M. Rivoire, S. Rovelli, A. Salesa Greus, F. Samtleben, D.F.E. Sánchez Losa, A. Sanguineti, M. Santangelo, A. Santonocito, D. Sapienza, P. Schnabel, J. Seneca, J. Sgura, I. Shanidze, R. Sharma, A. Simeone, F. Sinopoulou, A. Spisso, B. Spurio, M. Stavropoulos, D. Steijger, J. Stellacci, S.M. Taiuti, M. Tayalati, Y. Tenllado, E. Thakore, T. Tingay, S. Tzamariudaki, E. Tzanetatos, D. van Elewyck, V. Vannoye, G. Vasileiadis, George Versari, F. Viola, S. Vivolo, D. de Wasseige, G. Wilms, J. Wojaczyński, R. de Wolf, E. Zaborov, D. Zavatarelli, S. Zegarelli, A. Zito, D. Zornoza, J.D. Zúñiga, J. Zywucka, N. |
author_facet |
Aiello, S. Albert, A. Alves Garre, S. Aly, Z. Ameli, F. Andre, M. Androulakis, G. Anghinolfi, M. Anguita, M. Anton, G. Ardid, M. Aublin, J. Bagatelas, C. Barbarino, G. Baret, B. Basegmez Du Pree, S. Bendahman, M. Berbee, E. van den Berg, A.M. Bertin, V. Biagi, S. Biagioni, A. Bissinger, M. Boettcher, M. Boumaaza, J. Bouta, M. Bouwhuis, M. Bozza, C. Brânzaş, H. Bruijn, R. Brunner, J. Buis, E. Buompane, R. Busto, J. Caiffi, B. Calvo, D. Capone, A. Carretero, V. Castaldi, P. Celli, S. Chabab, M. Chau, N. Chen, A. Cherubini, S. Chiarella, V. Chiarusi, T. Circella, M. Cocimano, R. Coelho, J.A.B. Coleiro, A. Colomer Molla, M. Coniglione, R. Coyle, P. Creusot, A. Cuttone, G. d'Onofrio, A. Dallier, R. de Palma, M. Di Palma, I. Díaz, A.F. Diego-Tortosa, D. Distefano, C. Domi, A. Donà, R. Donzaud, C. Dornic, D. Dörr, M. Drouhin, D. Eberl, T. Eddyamoui, A. van Eeden, T. van Eijk, D. Bojaddaini, I. El Elsaesser, D. Enzenhöfer, A. Roselló, V. Espinosa Fermani, P. Ferrara, G. Filipović, M.D. Filippini, F. Fusco, L.A. Gabella, O. Gal, T. Soto, A. Garcia Garufi, F. Gatelet, Y. Geisselbrecht, N. Gialanella, L. Giorgio, E. Gozzini, S.R. Gracia, R. Graf, K. Grasso, D. Grella, G. Guderian, D. Guidi, C. Hallmann, S. Hamdaoui, H. van Haren, H. Heijboer, A. Hekalo, A. Hernández-Rey, J.J. Hofestädt, J. Huang, F. Ibnsalih, W. Idrissi Illuminati, G. James, C.W. de Jong, M. de Jong, P. Jung, B.J. Kadler, M. Kalaczyński, P. Kalekin, O. Katz, U.F. Khan Chowdhury, N.R Kistauri, G. van Der Knaap, F. Koffeman, E.N. Kooijman, P. Kouchner, A. Kreter, M. Kulikovskiy, V. Lahmann, R. Larosa, G. Le Breton, R. Leonardi, O. Leone, F. Leonora, E. Levi, G. Lincetto, M. Lindsey Clark, M. Lipreau, T. Lonardo, A. Longhitano, F. Lopez-Coto, D. Maderer, L. Mańczak, J. Mannheim, K. Margiotta, A. Marinelli, A. Markou, C. Martin, L. Martínez-Mora, J.A. Martini, A. Marzaioli, F. Mastroianni, S. Mazzou, S. Melis, K.W. Miele, G. Migliozzi, P. Migneco, E. Mijakowski, P. Miranda, L.S. Mollo, C.M. Morganti, M. Moser, M. Moussa, A. Muller, R. Musumeci, M. Nauta, L. Navas, S. Nicolau, C.A. Ó Fearraigh, B. Organokov, M. Orlando, A. Papalashvili, G. Papaleo, R. Pastore, C. Păun, A.M. Păvălaş, G.E. Pellegrino, C. Perrin-Terrin, M. Piattelli, P. Pieterse, C. Pikounis, K. Pisanti, O. Poirè, C. Popa, V. Post, M. Pradier, T. Pühlhofer, G. Pulvirenti, S. Rabyang, O. Raffaelli, F. Randazzo, N. Rapicavoli, A. Razzaque, S. Real, D. Reck, S. Riccobene, G. Richer, M. Rivoire, S. Rovelli, A. Salesa Greus, F. Samtleben, D.F.E. Sánchez Losa, A. Sanguineti, M. Santangelo, A. Santonocito, D. Sapienza, P. Schnabel, J. Seneca, J. Sgura, I. Shanidze, R. Sharma, A. Simeone, F. Sinopoulou, A. Spisso, B. Spurio, M. Stavropoulos, D. Steijger, J. Stellacci, S.M. Taiuti, M. Tayalati, Y. Tenllado, E. Thakore, T. Tingay, S. Tzamariudaki, E. Tzanetatos, D. van Elewyck, V. Vannoye, G. Vasileiadis, George Versari, F. Viola, S. Vivolo, D. de Wasseige, G. Wilms, J. Wojaczyński, R. de Wolf, E. Zaborov, D. Zavatarelli, S. Zegarelli, A. Zito, D. Zornoza, J.D. Zúñiga, J. Zywucka, N. |
author_sort |
Aiello, S. |
title |
Event reconstruction for KM3NeT/ORCA using convolutional neural networks |
title_short |
Event reconstruction for KM3NeT/ORCA using convolutional neural networks |
title_full |
Event reconstruction for KM3NeT/ORCA using convolutional neural networks |
title_fullStr |
Event reconstruction for KM3NeT/ORCA using convolutional neural networks |
title_full_unstemmed |
Event reconstruction for KM3NeT/ORCA using convolutional neural networks |
title_sort |
event reconstruction for km3net/orca using convolutional neural networks |
publisher |
HAL CCSD |
publishDate |
2020 |
url |
https://hal.science/hal-03178773 https://hal.science/hal-03178773/document https://hal.science/hal-03178773/file/Aiello_2020_J._Inst._15_P10005.pdf https://doi.org/10.1088/1748-0221/15/10/P10005 |
genre |
Orca |
genre_facet |
Orca |
op_source |
EISSN: 1748-0221 Journal of Instrumentation https://hal.science/hal-03178773 Journal of Instrumentation, 2020, 15 (10), pp.P10005. ⟨10.1088/1748-0221/15/10/P10005⟩ https://iopscience.iop.org/article/10.1088/1748-0221/15/10/P10005 |
op_relation |
info:eu-repo/semantics/altIdentifier/arxiv/2004.08254 info:eu-repo/semantics/altIdentifier/doi/10.1088/1748-0221/15/10/P10005 info:eu-repo/grantAgreement//713673/EU/Innovative doctoral programme for talented early-stage researchers in Spanish host organisations excellent in the areas of Science, Technology, Engineering and Mathematics (STEM). H2020-EU.1.3.4/INPhINIT hal-03178773 https://hal.science/hal-03178773 https://hal.science/hal-03178773/document https://hal.science/hal-03178773/file/Aiello_2020_J._Inst._15_P10005.pdf ARXIV: 2004.08254 doi:10.1088/1748-0221/15/10/P10005 INSPIRE: 1791707 |
op_rights |
http://creativecommons.org/licenses/by/ info:eu-repo/semantics/OpenAccess |
op_doi |
https://doi.org/10.1088/1748-0221/15/10/P10005 |
container_title |
Journal of Instrumentation |
container_volume |
15 |
container_issue |
10 |
container_start_page |
P10005 |
op_container_end_page |
P10005 |
_version_ |
1809934150233227264 |
spelling |
ftecoleminesnant:oai:HAL:hal-03178773v1 2024-09-09T20:02:10+00:00 Event reconstruction for KM3NeT/ORCA using convolutional neural networks Aiello, S. Albert, A. Alves Garre, S. Aly, Z. Ameli, F. Andre, M. Androulakis, G. Anghinolfi, M. Anguita, M. Anton, G. Ardid, M. Aublin, J. Bagatelas, C. Barbarino, G. Baret, B. Basegmez Du Pree, S. Bendahman, M. Berbee, E. van den Berg, A.M. Bertin, V. Biagi, S. Biagioni, A. Bissinger, M. Boettcher, M. Boumaaza, J. Bouta, M. Bouwhuis, M. Bozza, C. Brânzaş, H. Bruijn, R. Brunner, J. Buis, E. Buompane, R. Busto, J. Caiffi, B. Calvo, D. Capone, A. Carretero, V. Castaldi, P. Celli, S. Chabab, M. Chau, N. Chen, A. Cherubini, S. Chiarella, V. Chiarusi, T. Circella, M. Cocimano, R. Coelho, J.A.B. Coleiro, A. Colomer Molla, M. Coniglione, R. Coyle, P. Creusot, A. Cuttone, G. d'Onofrio, A. Dallier, R. de Palma, M. Di Palma, I. Díaz, A.F. Diego-Tortosa, D. Distefano, C. Domi, A. Donà, R. Donzaud, C. Dornic, D. Dörr, M. Drouhin, D. Eberl, T. Eddyamoui, A. van Eeden, T. van Eijk, D. Bojaddaini, I. El Elsaesser, D. Enzenhöfer, A. Roselló, V. Espinosa Fermani, P. Ferrara, G. Filipović, M.D. Filippini, F. Fusco, L.A. Gabella, O. Gal, T. Soto, A. Garcia Garufi, F. Gatelet, Y. Geisselbrecht, N. Gialanella, L. Giorgio, E. Gozzini, S.R. Gracia, R. Graf, K. Grasso, D. Grella, G. Guderian, D. Guidi, C. Hallmann, S. Hamdaoui, H. van Haren, H. Heijboer, A. Hekalo, A. Hernández-Rey, J.J. Hofestädt, J. Huang, F. Ibnsalih, W. Idrissi Illuminati, G. James, C.W. de Jong, M. de Jong, P. Jung, B.J. Kadler, M. Kalaczyński, P. Kalekin, O. Katz, U.F. Khan Chowdhury, N.R Kistauri, G. van Der Knaap, F. Koffeman, E.N. Kooijman, P. Kouchner, A. Kreter, M. Kulikovskiy, V. Lahmann, R. Larosa, G. Le Breton, R. Leonardi, O. Leone, F. Leonora, E. Levi, G. Lincetto, M. Lindsey Clark, M. Lipreau, T. Lonardo, A. Longhitano, F. Lopez-Coto, D. Maderer, L. Mańczak, J. Mannheim, K. Margiotta, A. Marinelli, A. Markou, C. Martin, L. Martínez-Mora, J.A. Martini, A. Marzaioli, F. Mastroianni, S. Mazzou, S. Melis, K.W. Miele, G. Migliozzi, P. Migneco, E. Mijakowski, P. Miranda, L.S. Mollo, C.M. Morganti, M. Moser, M. Moussa, A. Muller, R. Musumeci, M. Nauta, L. Navas, S. Nicolau, C.A. Ó Fearraigh, B. Organokov, M. Orlando, A. Papalashvili, G. Papaleo, R. Pastore, C. Păun, A.M. Păvălaş, G.E. Pellegrino, C. Perrin-Terrin, M. Piattelli, P. Pieterse, C. Pikounis, K. Pisanti, O. Poirè, C. Popa, V. Post, M. Pradier, T. Pühlhofer, G. Pulvirenti, S. Rabyang, O. Raffaelli, F. Randazzo, N. Rapicavoli, A. Razzaque, S. Real, D. Reck, S. Riccobene, G. Richer, M. Rivoire, S. Rovelli, A. Salesa Greus, F. Samtleben, D.F.E. Sánchez Losa, A. Sanguineti, M. Santangelo, A. Santonocito, D. Sapienza, P. Schnabel, J. Seneca, J. Sgura, I. Shanidze, R. Sharma, A. Simeone, F. Sinopoulou, A. Spisso, B. Spurio, M. Stavropoulos, D. Steijger, J. Stellacci, S.M. Taiuti, M. Tayalati, Y. Tenllado, E. Thakore, T. Tingay, S. Tzamariudaki, E. Tzanetatos, D. van Elewyck, V. Vannoye, G. Vasileiadis, George Versari, F. Viola, S. Vivolo, D. de Wasseige, G. Wilms, J. Wojaczyński, R. de Wolf, E. Zaborov, D. Zavatarelli, S. Zegarelli, A. Zito, D. Zornoza, J.D. Zúñiga, J. Zywucka, N. Istituto Nazionale di Fisica Nucleare (INFN) Groupe de Recherche en Physique des Hautes Energies (GRPHE) Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-IUT de Colmar Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA)) Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3) Centre de Physique des Particules de Marseille (CPPM) Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS) AstroParticule et Cosmologie (APC (UMR_7164)) Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité) Laboratoire de physique subatomique et des technologies associées (SUBATECH) Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST) Université de Nantes (UN)-Université de Nantes (UN)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique) Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT) Institut Pluridisciplinaire Hubert Curien (IPHC) Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS) Laboratoire Univers et Particules de Montpellier (LUPM) Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS) Institut universitaire de France (IUF) Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.) KM3NeT ANR-18-IDEX-0001,Université de Paris,Université de Paris(2018) ANR-15-CE31-0020,DAEMONS,Démonstration de la possibilité d'établir l'ordonnancement des masses de neutrinos dans la mer(2015) ANR-10-LABX-0023,UnivEarthS,Earth - Planets - Universe: observation, modeling, transfer(2010) European Project: 713673,INPhINIT 2020 https://hal.science/hal-03178773 https://hal.science/hal-03178773/document https://hal.science/hal-03178773/file/Aiello_2020_J._Inst._15_P10005.pdf https://doi.org/10.1088/1748-0221/15/10/P10005 en eng HAL CCSD IOP Publishing info:eu-repo/semantics/altIdentifier/arxiv/2004.08254 info:eu-repo/semantics/altIdentifier/doi/10.1088/1748-0221/15/10/P10005 info:eu-repo/grantAgreement//713673/EU/Innovative doctoral programme for talented early-stage researchers in Spanish host organisations excellent in the areas of Science, Technology, Engineering and Mathematics (STEM). H2020-EU.1.3.4/INPhINIT hal-03178773 https://hal.science/hal-03178773 https://hal.science/hal-03178773/document https://hal.science/hal-03178773/file/Aiello_2020_J._Inst._15_P10005.pdf ARXIV: 2004.08254 doi:10.1088/1748-0221/15/10/P10005 INSPIRE: 1791707 http://creativecommons.org/licenses/by/ info:eu-repo/semantics/OpenAccess EISSN: 1748-0221 Journal of Instrumentation https://hal.science/hal-03178773 Journal of Instrumentation, 2020, 15 (10), pp.P10005. ⟨10.1088/1748-0221/15/10/P10005⟩ https://iopscience.iop.org/article/10.1088/1748-0221/15/10/P10005 Cherenkov detectors Large detector systems for particle and astroparticle physics Neutrino detectors Performance of High Energy Physics Detectors neutrino: detector neutrino: interaction neutrino: atmosphere neutrino: mass radiation: Cherenkov vertex: primary KM3NeT neural network Cherenkov counter: water performance spatial distribution charged particle photomultiplier background network [PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] info:eu-repo/semantics/article Journal articles 2020 ftecoleminesnant https://doi.org/10.1088/1748-0221/15/10/P10005 2024-06-17T23:51:16Z International audience The KM3NeT research infrastructure is currently under construction at two locations in the Mediterranean Sea. The KM3NeT/ORCA water-Cherenkov neutrino detector off the French coast will instrument several megatons of seawater with photosensors. Its main objective is the determination of the neutrino mass ordering. This work aims at demonstrating the general applicability of deep convolutional neural networks to neutrino telescopes, using simulated datasets for the KM3NeT/ORCA detector as an example. To this end, the networks are employed to achieve reconstruction and classification tasks that constitute an alternative to the analysis pipeline presented for KM3NeT/ORCA in the KM3NeT Letter of Intent. They are used to infer event reconstruction estimates for the energy, the direction, and the interaction point of incident neutrinos. The spatial distribution of Cherenkov light generated by charged particles induced in neutrino interactions is classified as shower- or track-like, and the main background processes associated with the detection of atmospheric neutrinos are recognized. Performance comparisons to machine-learning classification and maximum-likelihood reconstruction algorithms previously developed for KM3NeT/ORCA are provided. It is shown that this application of deep convolutional neural networks to simulated datasets for a large-volume neutrino telescope yields competitive reconstruction results and performance improvements with respect to classical approaches. Article in Journal/Newspaper Orca Ecole des Mines de Nantes: HAL Journal of Instrumentation 15 10 P10005 P10005 |