Discovery, characterization and engineering of bacterial thermostable cellulose- degrading enzymes
Lignocellulose is the most abundant biomass on Earth, and thus our largest organic carbon reservoir. Enzymatic depolymerization of recalcitrant polysaccharides, notably cellulose, is a major cost driver in accessing the renewable energy stored within lignocellulosic biomass. Natural biodiversities m...
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Text |
Language: | unknown |
Published: |
ECI Digital Archives
2017
|
Subjects: | |
Online Access: | https://dc.engconfintl.org/enzyme_xxiv/45 |
_version_ | 1821827368891711488 |
---|---|
author | Jensen, Marianne S. Fredriksen, Lasse Pope, Phil B. Østby, Heidi Kunath, Benoît Vaaje-Kolstad, Gustav Eijsink, Vincent G.H. Altermark, Bjørn Smalås, Arne O. Stokke, Runar Steen, Ida H. |
author_facet | Jensen, Marianne S. Fredriksen, Lasse Pope, Phil B. Østby, Heidi Kunath, Benoît Vaaje-Kolstad, Gustav Eijsink, Vincent G.H. Altermark, Bjørn Smalås, Arne O. Stokke, Runar Steen, Ida H. |
author_sort | Jensen, Marianne S. |
collection | Engineering Conferences International: ECI Digital Archives |
description | Lignocellulose is the most abundant biomass on Earth, and thus our largest organic carbon reservoir. Enzymatic depolymerization of recalcitrant polysaccharides, notably cellulose, is a major cost driver in accessing the renewable energy stored within lignocellulosic biomass. Natural biodiversities may be explored to discover microbial enzymes that have evolved to conquer this task in various environments. We are studying novel enzymes from various biodiversities for the conversion of lignocellulosic materials, using (meta)genome mining and functional screening of fosmid libraries. Targeted biodiversities include deep-sea hot vents of the Arctic mid-ocean ridge (AMOR), the microbiome of the wood-eating Arctic shipworm, thermophilic enrichment cultures from biogas reactors, the Svalbard reindeer gut microbiome, and publicly available metagenomic data from various hot environments. Bioprospecting of the different biodiversities has so far resulted in the discovery of approximately 20 novel enzymes active on lignocellulosic substrates. The significant differences in the origin of the enzymes is reflected in their properties, both beneficial and challenging, and provide us with interesting engineering targets for improved performance in industrial settings. We will present case studies, including work on a novel thermostable cellulase named mgCel6A, with good activity on sulfite-pulped Norway spruce. This enzyme consists of a glycoside hydrolase family 6 catalytic domain (GH6) connected to a family 2 carbohydrate binding module (CBM2) and both the activity profile and predicted structural similarities to known cellulases suggest that mgCel6A is an endo-acting cellulase. Comparison of the full-length enzyme with the catalytic domain showed that the CBM strongly increases substrate binding, while not affecting thermal stability. However, importantly, in reactions with higher substrate concentrations the full-length enzyme was outperformed by the catalytic domain alone, underpinning previous suggestions that CBMs may be ... |
format | Text |
genre | Arctic Svalbard svalbard reindeer |
genre_facet | Arctic Svalbard svalbard reindeer |
geographic | Arctic Norway Svalbard |
geographic_facet | Arctic Norway Svalbard |
id | fteci:oai:dc.engconfintl.org:enzyme_xxiv-1134 |
institution | Open Polar |
language | unknown |
op_collection_id | fteci |
op_relation | https://dc.engconfintl.org/enzyme_xxiv/45 |
op_source | Enzyme Engineering XXIV |
publishDate | 2017 |
publisher | ECI Digital Archives |
record_format | openpolar |
spelling | fteci:oai:dc.engconfintl.org:enzyme_xxiv-1134 2025-01-16T20:32:16+00:00 Discovery, characterization and engineering of bacterial thermostable cellulose- degrading enzymes Jensen, Marianne S. Fredriksen, Lasse Pope, Phil B. Østby, Heidi Kunath, Benoît Vaaje-Kolstad, Gustav Eijsink, Vincent G.H. Altermark, Bjørn Smalås, Arne O. Stokke, Runar Steen, Ida H. 2017-09-24T07:00:00Z https://dc.engconfintl.org/enzyme_xxiv/45 unknown ECI Digital Archives https://dc.engconfintl.org/enzyme_xxiv/45 Enzyme Engineering XXIV : lignocellulose metagenome glycoside hydrolase lytic polysaccharide monooxygenase thermal stability Engineering text 2017 fteci 2022-12-27T14:49:04Z Lignocellulose is the most abundant biomass on Earth, and thus our largest organic carbon reservoir. Enzymatic depolymerization of recalcitrant polysaccharides, notably cellulose, is a major cost driver in accessing the renewable energy stored within lignocellulosic biomass. Natural biodiversities may be explored to discover microbial enzymes that have evolved to conquer this task in various environments. We are studying novel enzymes from various biodiversities for the conversion of lignocellulosic materials, using (meta)genome mining and functional screening of fosmid libraries. Targeted biodiversities include deep-sea hot vents of the Arctic mid-ocean ridge (AMOR), the microbiome of the wood-eating Arctic shipworm, thermophilic enrichment cultures from biogas reactors, the Svalbard reindeer gut microbiome, and publicly available metagenomic data from various hot environments. Bioprospecting of the different biodiversities has so far resulted in the discovery of approximately 20 novel enzymes active on lignocellulosic substrates. The significant differences in the origin of the enzymes is reflected in their properties, both beneficial and challenging, and provide us with interesting engineering targets for improved performance in industrial settings. We will present case studies, including work on a novel thermostable cellulase named mgCel6A, with good activity on sulfite-pulped Norway spruce. This enzyme consists of a glycoside hydrolase family 6 catalytic domain (GH6) connected to a family 2 carbohydrate binding module (CBM2) and both the activity profile and predicted structural similarities to known cellulases suggest that mgCel6A is an endo-acting cellulase. Comparison of the full-length enzyme with the catalytic domain showed that the CBM strongly increases substrate binding, while not affecting thermal stability. However, importantly, in reactions with higher substrate concentrations the full-length enzyme was outperformed by the catalytic domain alone, underpinning previous suggestions that CBMs may be ... Text Arctic Svalbard svalbard reindeer Engineering Conferences International: ECI Digital Archives Arctic Norway Svalbard |
spellingShingle | : lignocellulose metagenome glycoside hydrolase lytic polysaccharide monooxygenase thermal stability Engineering Jensen, Marianne S. Fredriksen, Lasse Pope, Phil B. Østby, Heidi Kunath, Benoît Vaaje-Kolstad, Gustav Eijsink, Vincent G.H. Altermark, Bjørn Smalås, Arne O. Stokke, Runar Steen, Ida H. Discovery, characterization and engineering of bacterial thermostable cellulose- degrading enzymes |
title | Discovery, characterization and engineering of bacterial thermostable cellulose- degrading enzymes |
title_full | Discovery, characterization and engineering of bacterial thermostable cellulose- degrading enzymes |
title_fullStr | Discovery, characterization and engineering of bacterial thermostable cellulose- degrading enzymes |
title_full_unstemmed | Discovery, characterization and engineering of bacterial thermostable cellulose- degrading enzymes |
title_short | Discovery, characterization and engineering of bacterial thermostable cellulose- degrading enzymes |
title_sort | discovery, characterization and engineering of bacterial thermostable cellulose- degrading enzymes |
topic | : lignocellulose metagenome glycoside hydrolase lytic polysaccharide monooxygenase thermal stability Engineering |
topic_facet | : lignocellulose metagenome glycoside hydrolase lytic polysaccharide monooxygenase thermal stability Engineering |
url | https://dc.engconfintl.org/enzyme_xxiv/45 |