10 Be in polar ice cores and 14 C in tree rings: separation of production and system effects, comparison with past climate changes and implications for solar physics

Understanding the Sun's magnetic activity is important because of its impact on the Earth's environment. The sunspot record since 1610 shows irregular 11-year cycles of activity; they are modulated on longer timescales and were interrupted by the Maunder minimum in the 17th century. Recent...

Full description

Bibliographic Details
Main Author: Abreu Castiñeira, José Ángel
Other Authors: Beer, Jürg (thesis advisor), Ferriz Mas, Antonio (thesis advisor), Brönnimann, Stefan (thesis advisor), Schmutz, Werner (thesis advisor)
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: ETH Zürich 2009
Subjects:
Online Access:https://doi.org/10.3929/ethz-a-006031220
Description
Summary:Understanding the Sun's magnetic activity is important because of its impact on the Earth's environment. The sunspot record since 1610 shows irregular 11-year cycles of activity; they are modulated on longer timescales and were interrupted by the Maunder minimum in the 17th century. Recent activity has been abnormally high for at least 8 cycles: is this grand maximum likely to terminate soon or even to be followed by another (Maunder-like) grand minimum? Cosmogenic radionuclides stored in natural archives such as 10 Be in ice cores and 14 C in tree rings have proven to be very useful in reconstructing past solar activity, and changes in the geomagnetic field intensity over many millennia. At present, this is the only method to extend the records of solar activity proxies beyond the instrumental period. To answer the previous questions we use, as a measure of the Sun's open magnetic field, a composite record of the solar modulation potential ϕ, reconstructed principally from the record of cosmogenic 10 Be abundances in the GRIP ice core from Greenland. [.] Die Sonnenaktivität zu verstehen ist wichtig, da sie ein wichtiger Antreiber für das Klima der Erde ist. Die gemessene Anzahl der Sonneflecken seit 1610 weist einen unregelmässigen 11-Jahreszyklus auf. Dieser Zyklus variiert auch auf langeren Zeitskalen und war sogar im 17. Jahrhundert wahrend des Maunder-Minimums unterbrochen. Hingegen war die Sonnenaktivität wahrend der letzten acht 11-Jahreszyklen aussergewöhnlich hoch. Es stellen sich also die Fragen: Wann wird die momentane Phase hoher Aktivität zu Ende gehen? Was passiert danach? Kommt im Anschluss ein Maunder Minimum? Kosmogene Radionuklide, gespeichert in natürlichen Archiven wie, z.B., 10 Be in Eisbohrkernen und 14 C in Baumringen, konnen verwendet werden, um einerseits die Vergangenheit der letzten Jahrtausende der Sonnenaktivität und andererseits der Erdmagnetfeldstarke zu rekonstruieren. Zur Zeit ist das die einzige verfügbare Methode, um direkte Proxydaten (wie Sonnenflecken) der ...