Glacial North Atlantic Millennial Variability over the Last 300,000 Years

The hematite-stained grain (HSG) proxy method, commonly employed by the late G.C. Bond to detect the "1500-year cycle" in North Atlantic climate, is reproduced and verified for the first time. The exact method is compiled from various sources and presented in Chapter 1. In Chapter 2, an HSG...

Full description

Bibliographic Details
Main Author: Obrochta, Stephen
Other Authors: Crowley, Thomas J
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: 2008
Subjects:
Online Access:https://hdl.handle.net/10161/910
id ftdukeunivdsp:oai:localhost:10161/910
record_format openpolar
spelling ftdukeunivdsp:oai:localhost:10161/910 2023-11-12T04:17:55+01:00 Glacial North Atlantic Millennial Variability over the Last 300,000 Years Obrochta, Stephen Crowley, Thomas J 2008-11-26 20475702 bytes application/pdf https://hdl.handle.net/10161/910 en_US eng https://hdl.handle.net/10161/910 Geology Dissertation 2008 ftdukeunivdsp 2023-10-17T09:45:42Z The hematite-stained grain (HSG) proxy method, commonly employed by the late G.C. Bond to detect the "1500-year cycle" in North Atlantic climate, is reproduced and verified for the first time. The exact method is compiled from various sources and presented in Chapter 1. In Chapter 2, an HSG record from classic North Atlantic DSDP Site 609 is reconsidered. While the Site 609 HSG record was initially interpreted to exhibit 1500-year variability, it did not actually contain spectral power at the 1500-year band. The chronology for Site 609 is based on radicarbon dates to 26 ka, beyond which the sea surface temperature record is matched to the record of air temperature variations over Greenland from the GISP2 ice core. However, it is now evident that the lack of spectral power at the primary period of the observed fluctuation was likely due to the GISP2 chronology, which has been subsequently shown to become progressively deficient over the course of the last glaciation. Updating the Site 609 chronology to the latest chronology for the virtually complete NGRIP Greenland ice core, which is based on layer counting to 60 ka, results in 99% significant spectral power at a 1/1415 year frequency. In Chapter 3, the classic Site 609 lithic records are extended to the previous two glaciations, glacial Stages 6 and 8, at IODP Site U1308 (reoccupied Site 609). The "1500-year cycle" is not detected within Stage 6, perhaps indicating that D-O Events were not manifest in a similar fashion, if at all. Heinrich Event are also not detected, indicating relative stability of the North American Laurentide Ice Sheet during Stage 6. As a result, individual North Atlantic sites recorded lower-amplitude, asynchronous hydrographic changes. The SST proxy record at Site U1308 during Stage 6 primarily records intermediate temperatures. The subtle SST changes detected likely indicate local as opposed to basin-scale changes related to the migration of oceanic frontal boundaries. During Stage 6, benthic δ13C changes are of lower amplitude than Stages 2 ... Doctoral or Postdoctoral Thesis Greenland Greenland ice core ice core Ice Sheet NGRIP North Atlantic Duke University Libraries: DukeSpace Greenland
institution Open Polar
collection Duke University Libraries: DukeSpace
op_collection_id ftdukeunivdsp
language English
topic Geology
spellingShingle Geology
Obrochta, Stephen
Glacial North Atlantic Millennial Variability over the Last 300,000 Years
topic_facet Geology
description The hematite-stained grain (HSG) proxy method, commonly employed by the late G.C. Bond to detect the "1500-year cycle" in North Atlantic climate, is reproduced and verified for the first time. The exact method is compiled from various sources and presented in Chapter 1. In Chapter 2, an HSG record from classic North Atlantic DSDP Site 609 is reconsidered. While the Site 609 HSG record was initially interpreted to exhibit 1500-year variability, it did not actually contain spectral power at the 1500-year band. The chronology for Site 609 is based on radicarbon dates to 26 ka, beyond which the sea surface temperature record is matched to the record of air temperature variations over Greenland from the GISP2 ice core. However, it is now evident that the lack of spectral power at the primary period of the observed fluctuation was likely due to the GISP2 chronology, which has been subsequently shown to become progressively deficient over the course of the last glaciation. Updating the Site 609 chronology to the latest chronology for the virtually complete NGRIP Greenland ice core, which is based on layer counting to 60 ka, results in 99% significant spectral power at a 1/1415 year frequency. In Chapter 3, the classic Site 609 lithic records are extended to the previous two glaciations, glacial Stages 6 and 8, at IODP Site U1308 (reoccupied Site 609). The "1500-year cycle" is not detected within Stage 6, perhaps indicating that D-O Events were not manifest in a similar fashion, if at all. Heinrich Event are also not detected, indicating relative stability of the North American Laurentide Ice Sheet during Stage 6. As a result, individual North Atlantic sites recorded lower-amplitude, asynchronous hydrographic changes. The SST proxy record at Site U1308 during Stage 6 primarily records intermediate temperatures. The subtle SST changes detected likely indicate local as opposed to basin-scale changes related to the migration of oceanic frontal boundaries. During Stage 6, benthic δ13C changes are of lower amplitude than Stages 2 ...
author2 Crowley, Thomas J
format Doctoral or Postdoctoral Thesis
author Obrochta, Stephen
author_facet Obrochta, Stephen
author_sort Obrochta, Stephen
title Glacial North Atlantic Millennial Variability over the Last 300,000 Years
title_short Glacial North Atlantic Millennial Variability over the Last 300,000 Years
title_full Glacial North Atlantic Millennial Variability over the Last 300,000 Years
title_fullStr Glacial North Atlantic Millennial Variability over the Last 300,000 Years
title_full_unstemmed Glacial North Atlantic Millennial Variability over the Last 300,000 Years
title_sort glacial north atlantic millennial variability over the last 300,000 years
publishDate 2008
url https://hdl.handle.net/10161/910
geographic Greenland
geographic_facet Greenland
genre Greenland
Greenland ice core
ice core
Ice Sheet
NGRIP
North Atlantic
genre_facet Greenland
Greenland ice core
ice core
Ice Sheet
NGRIP
North Atlantic
op_relation https://hdl.handle.net/10161/910
_version_ 1782334673540612096