Remotely Sensed Estimates and Controls of Large-Scale Oceanic Net Community Production

Oceanic net community production (NCP), defined as photosynthesis in excess of respiration, lowers the CO2 concentration at the ocean surface and in the process regulates atmospheric CO2 levels on seasonal to glacial-interglacial time scales. The magnitude of oceanic NCP, and the regulating factors...

Full description

Bibliographic Details
Main Author: Li, Zuchuan
Other Authors: Cassar, Nicolas
Format: Doctoral or Postdoctoral Thesis
Language:unknown
Published: 2017
Subjects:
Online Access:https://hdl.handle.net/10161/14418
id ftdukeunivdsp:oai:localhost:10161/14418
record_format openpolar
spelling ftdukeunivdsp:oai:localhost:10161/14418 2023-11-12T04:07:19+01:00 Remotely Sensed Estimates and Controls of Large-Scale Oceanic Net Community Production Li, Zuchuan Cassar, Nicolas 2017 application/pdf https://hdl.handle.net/10161/14418 unknown https://hdl.handle.net/10161/14418 Biogeochemistry Export Production Export Ratio Net Community Production O2/Ar Remote Sensing Dissertation 2017 ftdukeunivdsp 2023-10-17T09:41:47Z Oceanic net community production (NCP), defined as photosynthesis in excess of respiration, lowers the CO2 concentration at the ocean surface and in the process regulates atmospheric CO2 levels on seasonal to glacial-interglacial time scales. The magnitude of oceanic NCP, and the regulating factors are however poorly constrained. This dissertation aims to derive estimates of the large-scale distribution of NCP and to explore the mechanisms driving this variability, at regional scales (Western Antarctic Peninsula; Chapter 2), basin scales (Southern Ocean, Chapter 3), and global scale (world oceans, Chapter 4). In Chapter 2, we use remotely sensed properties and in-situ observations of O2/Ar-NCP from 2008 to 2014 to explore the interannual variability in NCP at the Western Antarctic Peninsula. We find that annual NCP in the shelf and coastal regions is up to eight times higher than in offshore regions, with hotspots observed around canyons. The interannual variability in annual NCP observed in the region is likely controlled by the iron supply from subsurface or horizontal advection. In Chapter 3, we use remotely sensed properties to investigate the impact of mixed-layer dynamics on NCP in the Southern Ocean. We find that, as expected, NCP is largely controlled by light availability on seasonal time scales. On intra-seasonal time scales, a deepening of mixed layer increases NCP which we attribute to increased nutrient availability. On interannual time scales, NCP correlates with a host of parameters (i.e., stratification, wind kinetic energy, and mixed layer depth), but not to mixed layer depth (MLD). Although we do not observe a secular trend in NCP for the entire Southern Ocean, NCP increases (decreases) in the Atlantic (Pacific) sector over the 1997-2014 period. Overall, our results show that the driving mechanisms behind the NCP distribution vary as a function of the temporal and spatial scales under study. In Chapter 4, we derive two global satellite NCP algorithms using O2/Ar measurements and the ... Doctoral or Postdoctoral Thesis Antarc* Antarctic Antarctic Peninsula Southern Ocean Duke University Libraries: DukeSpace Antarctic Antarctic Peninsula Pacific Southern Ocean
institution Open Polar
collection Duke University Libraries: DukeSpace
op_collection_id ftdukeunivdsp
language unknown
topic Biogeochemistry
Export Production
Export Ratio
Net Community Production
O2/Ar
Remote Sensing
spellingShingle Biogeochemistry
Export Production
Export Ratio
Net Community Production
O2/Ar
Remote Sensing
Li, Zuchuan
Remotely Sensed Estimates and Controls of Large-Scale Oceanic Net Community Production
topic_facet Biogeochemistry
Export Production
Export Ratio
Net Community Production
O2/Ar
Remote Sensing
description Oceanic net community production (NCP), defined as photosynthesis in excess of respiration, lowers the CO2 concentration at the ocean surface and in the process regulates atmospheric CO2 levels on seasonal to glacial-interglacial time scales. The magnitude of oceanic NCP, and the regulating factors are however poorly constrained. This dissertation aims to derive estimates of the large-scale distribution of NCP and to explore the mechanisms driving this variability, at regional scales (Western Antarctic Peninsula; Chapter 2), basin scales (Southern Ocean, Chapter 3), and global scale (world oceans, Chapter 4). In Chapter 2, we use remotely sensed properties and in-situ observations of O2/Ar-NCP from 2008 to 2014 to explore the interannual variability in NCP at the Western Antarctic Peninsula. We find that annual NCP in the shelf and coastal regions is up to eight times higher than in offshore regions, with hotspots observed around canyons. The interannual variability in annual NCP observed in the region is likely controlled by the iron supply from subsurface or horizontal advection. In Chapter 3, we use remotely sensed properties to investigate the impact of mixed-layer dynamics on NCP in the Southern Ocean. We find that, as expected, NCP is largely controlled by light availability on seasonal time scales. On intra-seasonal time scales, a deepening of mixed layer increases NCP which we attribute to increased nutrient availability. On interannual time scales, NCP correlates with a host of parameters (i.e., stratification, wind kinetic energy, and mixed layer depth), but not to mixed layer depth (MLD). Although we do not observe a secular trend in NCP for the entire Southern Ocean, NCP increases (decreases) in the Atlantic (Pacific) sector over the 1997-2014 period. Overall, our results show that the driving mechanisms behind the NCP distribution vary as a function of the temporal and spatial scales under study. In Chapter 4, we derive two global satellite NCP algorithms using O2/Ar measurements and the ...
author2 Cassar, Nicolas
format Doctoral or Postdoctoral Thesis
author Li, Zuchuan
author_facet Li, Zuchuan
author_sort Li, Zuchuan
title Remotely Sensed Estimates and Controls of Large-Scale Oceanic Net Community Production
title_short Remotely Sensed Estimates and Controls of Large-Scale Oceanic Net Community Production
title_full Remotely Sensed Estimates and Controls of Large-Scale Oceanic Net Community Production
title_fullStr Remotely Sensed Estimates and Controls of Large-Scale Oceanic Net Community Production
title_full_unstemmed Remotely Sensed Estimates and Controls of Large-Scale Oceanic Net Community Production
title_sort remotely sensed estimates and controls of large-scale oceanic net community production
publishDate 2017
url https://hdl.handle.net/10161/14418
geographic Antarctic
Antarctic Peninsula
Pacific
Southern Ocean
geographic_facet Antarctic
Antarctic Peninsula
Pacific
Southern Ocean
genre Antarc*
Antarctic
Antarctic Peninsula
Southern Ocean
genre_facet Antarc*
Antarctic
Antarctic Peninsula
Southern Ocean
op_relation https://hdl.handle.net/10161/14418
_version_ 1782328042786390016