Enhanced CH 4 -CO 2 Hydrate Swapping in the Presence of Low Dosage Methanol

CO 2 -rich gas injection into natural gas hydrate reservoirs is proposed as a carbon-neutral, novel technique to store CO 2 while simultaneously producing CH 4 gas from methane hydrate deposits without disturbing geological settings. This method is limited by the mass transport barrier created by hy...

Full description

Bibliographic Details
Published in:Energies
Main Authors: Pandey, Jyoti Shanker, Karantonidis, Charilaos, Karcz, Adam Paul, von Solms, Nicolas
Format: Article in Journal/Newspaper
Language:English
Published: 2020
Subjects:
Online Access:https://orbit.dtu.dk/en/publications/b3eb8a09-02b5-4a2f-ab76-d2eff0793467
https://doi.org/10.3390/en13205238
https://backend.orbit.dtu.dk/ws/files/221910639/energies_13_05238.pdf
Description
Summary:CO 2 -rich gas injection into natural gas hydrate reservoirs is proposed as a carbon-neutral, novel technique to store CO 2 while simultaneously producing CH 4 gas from methane hydrate deposits without disturbing geological settings. This method is limited by the mass transport barrier created by hydrate film formation at the liquid–gas interface. The very low gas diffusivity through hydrate film formed at this interface causes low CO 2 availability at the gas–hydrate interface, thus lowering the recovery and replacement efficiency during CH 4 -CO 2 exchange. In a first-of-its-kind study, we have demonstrate the successful application of low dosage methanol to enhance gas storage and recovery and compare it with water and other surface-active kinetic promoters including SDS and L-methionine. Our study shows 40–80% CH 4 recovery, 83–93% CO 2 storage and 3–10% CH 4 -CO 2 replacement efficiency in the presence of 5 wt% methanol, and further improvement in the swapping process due to a change in temperature from 1–4 °C is observed. We also discuss the influence of initial water saturation (30–66%), hydrate morphology (grain-coating and pore-filling) and hydrate surface area on the CH 4 -CO 2 hydrate swapping. Very distinctive behavior in methane recovery caused by initial water saturation (above and below S wi = 0.35) and hydrate morphology is also discussed. Improved CO 2 storage and methane recovery in the presence of methanol is attributed to its dual role as anti-agglomerate and thermodynamic driving force enhancer between CH 4 -CO 2 hydrate phase boundaries when methanol is used at a low concentration (5 wt%). The findings of this study can be useful in exploring the usage of low dosage, bio-friendly, anti-agglomerate and hydrate inhibition compounds in improving CH 4 recovery and storing CO 2 in hydrate reservoirs without disturbing geological formation. To the best of the authors’ knowledge, this is the first experimental study to explore the novel application of an anti-agglomerate and hydrate inhibitor in ...