Extended-Range Prediction with Low-Dimensional, Stochastic-Dynamic Models: A Data-driven Approach

The long-term goal of this project is to quantify the extent to which reduced-order models can be used for the description, understanding and prediction of atmospheric, oceanic and sea ice variability on time scales of 1 12 months and beyond. Prepared in cooperation with Columbia University, Palisad...

Full description

Bibliographic Details
Main Authors: Ghil, Michael, Chekroun, Mickael D, Kondrashov, Dmitri, Tippett, Michael K, Robertson, Andrew, Camargo, Suzana J, Cane, Mark, Chen, Dake, Kaplan, Alexey, Kushnir, Yochanan, Sobel, Adam, Ting, Mingfang, Yuan, Xiaojun
Other Authors: CALIFORNIA UNIV LOS ANGELES INST OF GEOPHYSICS AND PLANETARY PHYSICS
Format: Text
Language:English
Published: 2012
Subjects:
Online Access:http://www.dtic.mil/docs/citations/ADA572180
http://oai.dtic.mil/oai/oai?&verb=getRecord&metadataPrefix=html&identifier=ADA572180
id ftdtic:ADA572180
record_format openpolar
spelling ftdtic:ADA572180 2023-05-15T17:31:00+02:00 Extended-Range Prediction with Low-Dimensional, Stochastic-Dynamic Models: A Data-driven Approach Ghil, Michael Chekroun, Mickael D Kondrashov, Dmitri Tippett, Michael K Robertson, Andrew Camargo, Suzana J Cane, Mark Chen, Dake Kaplan, Alexey Kushnir, Yochanan Sobel, Adam Ting, Mingfang Yuan, Xiaojun CALIFORNIA UNIV LOS ANGELES INST OF GEOPHYSICS AND PLANETARY PHYSICS 2012-09-30 text/html http://www.dtic.mil/docs/citations/ADA572180 http://oai.dtic.mil/oai/oai?&verb=getRecord&metadataPrefix=html&identifier=ADA572180 en eng http://www.dtic.mil/docs/citations/ADA572180 Approved for public release; distribution is unlimited. DTIC Physical and Dynamic Oceanography *CLIMATE *OCEANS *SEASONAL VARIATIONS *STOCHASTIC PROCESSES LONG RANGE(TIME) MODELS PREDICTIONS EL NINO-SOUTHERN OSCILLATION LOW DIMENSIONAL MODELS LOW FREQUENCY MODELS MADDEN-JULIAN OSCILLATION NORTH ATLANTIC OSCILLATION PACIFIC-NORTH AMERICAN PATTERN STOCHASTIC-DYNAMIC MODELS SEA SURFACE TEMPERATURE Text 2012 ftdtic 2016-02-24T10:07:24Z The long-term goal of this project is to quantify the extent to which reduced-order models can be used for the description, understanding and prediction of atmospheric, oceanic and sea ice variability on time scales of 1 12 months and beyond. Prepared in cooperation with Columbia University, Palisades, NY. Text North Atlantic North Atlantic oscillation Sea ice Defense Technical Information Center: DTIC Technical Reports database Pacific Palisades ENVELOPE(159.167,159.167,-82.833,-82.833)
institution Open Polar
collection Defense Technical Information Center: DTIC Technical Reports database
op_collection_id ftdtic
language English
topic Physical and Dynamic Oceanography
*CLIMATE
*OCEANS
*SEASONAL VARIATIONS
*STOCHASTIC PROCESSES
LONG RANGE(TIME)
MODELS
PREDICTIONS
EL NINO-SOUTHERN OSCILLATION
LOW DIMENSIONAL MODELS
LOW FREQUENCY MODELS
MADDEN-JULIAN OSCILLATION
NORTH ATLANTIC OSCILLATION
PACIFIC-NORTH AMERICAN PATTERN
STOCHASTIC-DYNAMIC MODELS
SEA SURFACE TEMPERATURE
spellingShingle Physical and Dynamic Oceanography
*CLIMATE
*OCEANS
*SEASONAL VARIATIONS
*STOCHASTIC PROCESSES
LONG RANGE(TIME)
MODELS
PREDICTIONS
EL NINO-SOUTHERN OSCILLATION
LOW DIMENSIONAL MODELS
LOW FREQUENCY MODELS
MADDEN-JULIAN OSCILLATION
NORTH ATLANTIC OSCILLATION
PACIFIC-NORTH AMERICAN PATTERN
STOCHASTIC-DYNAMIC MODELS
SEA SURFACE TEMPERATURE
Ghil, Michael
Chekroun, Mickael D
Kondrashov, Dmitri
Tippett, Michael K
Robertson, Andrew
Camargo, Suzana J
Cane, Mark
Chen, Dake
Kaplan, Alexey
Kushnir, Yochanan
Sobel, Adam
Ting, Mingfang
Yuan, Xiaojun
Extended-Range Prediction with Low-Dimensional, Stochastic-Dynamic Models: A Data-driven Approach
topic_facet Physical and Dynamic Oceanography
*CLIMATE
*OCEANS
*SEASONAL VARIATIONS
*STOCHASTIC PROCESSES
LONG RANGE(TIME)
MODELS
PREDICTIONS
EL NINO-SOUTHERN OSCILLATION
LOW DIMENSIONAL MODELS
LOW FREQUENCY MODELS
MADDEN-JULIAN OSCILLATION
NORTH ATLANTIC OSCILLATION
PACIFIC-NORTH AMERICAN PATTERN
STOCHASTIC-DYNAMIC MODELS
SEA SURFACE TEMPERATURE
description The long-term goal of this project is to quantify the extent to which reduced-order models can be used for the description, understanding and prediction of atmospheric, oceanic and sea ice variability on time scales of 1 12 months and beyond. Prepared in cooperation with Columbia University, Palisades, NY.
author2 CALIFORNIA UNIV LOS ANGELES INST OF GEOPHYSICS AND PLANETARY PHYSICS
format Text
author Ghil, Michael
Chekroun, Mickael D
Kondrashov, Dmitri
Tippett, Michael K
Robertson, Andrew
Camargo, Suzana J
Cane, Mark
Chen, Dake
Kaplan, Alexey
Kushnir, Yochanan
Sobel, Adam
Ting, Mingfang
Yuan, Xiaojun
author_facet Ghil, Michael
Chekroun, Mickael D
Kondrashov, Dmitri
Tippett, Michael K
Robertson, Andrew
Camargo, Suzana J
Cane, Mark
Chen, Dake
Kaplan, Alexey
Kushnir, Yochanan
Sobel, Adam
Ting, Mingfang
Yuan, Xiaojun
author_sort Ghil, Michael
title Extended-Range Prediction with Low-Dimensional, Stochastic-Dynamic Models: A Data-driven Approach
title_short Extended-Range Prediction with Low-Dimensional, Stochastic-Dynamic Models: A Data-driven Approach
title_full Extended-Range Prediction with Low-Dimensional, Stochastic-Dynamic Models: A Data-driven Approach
title_fullStr Extended-Range Prediction with Low-Dimensional, Stochastic-Dynamic Models: A Data-driven Approach
title_full_unstemmed Extended-Range Prediction with Low-Dimensional, Stochastic-Dynamic Models: A Data-driven Approach
title_sort extended-range prediction with low-dimensional, stochastic-dynamic models: a data-driven approach
publishDate 2012
url http://www.dtic.mil/docs/citations/ADA572180
http://oai.dtic.mil/oai/oai?&verb=getRecord&metadataPrefix=html&identifier=ADA572180
long_lat ENVELOPE(159.167,159.167,-82.833,-82.833)
geographic Pacific
Palisades
geographic_facet Pacific
Palisades
genre North Atlantic
North Atlantic oscillation
Sea ice
genre_facet North Atlantic
North Atlantic oscillation
Sea ice
op_source DTIC
op_relation http://www.dtic.mil/docs/citations/ADA572180
op_rights Approved for public release; distribution is unlimited.
_version_ 1766128270461370368