A Review of the Thermodynamics of Frost Heave

Thermodynamic equilibrium requires a balance of thermal, mechanical, and chemical forces. The general equation for mechanical equilibrium between two phases describes capillary effects in porous materials, important in both unsaturated water flow and in understanding ice/water interfaces in freezing...

Full description

Bibliographic Details
Main Author: Henry, Karen S.
Other Authors: ENGINEER RESEARCH AND DEVELOPMENT CENTER HANOVER NH COLD REGIONS RESEARCH AND ENGINEERING LAB
Format: Text
Language:English
Published: 2000
Subjects:
Ice
Online Access:http://www.dtic.mil/docs/citations/ADA381842
http://oai.dtic.mil/oai/oai?&verb=getRecord&metadataPrefix=html&identifier=ADA381842
id ftdtic:ADA381842
record_format openpolar
spelling ftdtic:ADA381842 2023-05-15T16:37:33+02:00 A Review of the Thermodynamics of Frost Heave Henry, Karen S. ENGINEER RESEARCH AND DEVELOPMENT CENTER HANOVER NH COLD REGIONS RESEARCH AND ENGINEERING LAB 2000-09 text/html http://www.dtic.mil/docs/citations/ADA381842 http://oai.dtic.mil/oai/oai?&verb=getRecord&metadataPrefix=html&identifier=ADA381842 en eng http://www.dtic.mil/docs/citations/ADA381842 APPROVED FOR PUBLIC RELEASE DTIC AND NTIS Snow Ice and Permafrost Hydrology Limnology and Potamology *WATER FLOW *PHASE TRANSFORMATIONS *FROST HEAVE HEAT TRANSFER EQUILIBRIUM(GENERAL) MASS FLOW FREEZING FROZEN SOILS OSMOTIC PRESSURE SOIL DYNAMICS HYDRAULIC PRESSURE ICE LENSES HYDRAULIC CONDUCTIVITY Text 2000 ftdtic 2016-02-20T06:01:31Z Thermodynamic equilibrium requires a balance of thermal, mechanical, and chemical forces. The general equation for mechanical equilibrium between two phases describes capillary effects in porous materials, important in both unsaturated water flow and in understanding ice/water interfaces in freezing soil. The Gibbs-Duhem equation, which relates changes in chemical potential of a substance to changes in temperature, pressure, and presence of other chemicals, is of critical importance in understanding the flow of water in freezing soils. Osmotic pressure, related to the chemical potential of the substance, is useful in formulating expressions for total soil water pressure because soil water contains solutes, and the influence of soil particle surfaces can be "approximated" as solutes. It is the gradient in the total soil water pressure that drives flow to the freezing front in soils. The generalized Clapeyron equation is utilized by the thermodynamically based models of Miller (1978) and Gilpin (1980). In these models Fourier's Law and Darcy's Law describe heat and mass transfer in the frozen fringe, respectively, and mass flow and heat flow are coupled by one equation that describes heat transfer in the frozen soil. Ice lenses start to grow when the effective stress in the frozen fringe becomes zero (Miller 1978, Gilpin 1980). Once an ice lens is established, liquid water is removed from the adjacent pores because of phase change, and water flows up through the soil to replenish the liquid water. If the rate of water loss caused by phase change is matched by the rate of water flow to replenish the liquid water, the ice lens will continue to grow in thickness. If the hydraulic conductivity of the soil limits the rate of water replenishment to the ice lens for the given rate of heat loss, soil water will freeze at increasing depths with associated changes in the depth and thickness of the frozen fringe. Text Ice permafrost Defense Technical Information Center: DTIC Technical Reports database
institution Open Polar
collection Defense Technical Information Center: DTIC Technical Reports database
op_collection_id ftdtic
language English
topic Snow
Ice and Permafrost
Hydrology
Limnology and Potamology
*WATER FLOW
*PHASE TRANSFORMATIONS
*FROST HEAVE
HEAT TRANSFER
EQUILIBRIUM(GENERAL)
MASS FLOW
FREEZING
FROZEN SOILS
OSMOTIC PRESSURE
SOIL DYNAMICS
HYDRAULIC PRESSURE
ICE LENSES
HYDRAULIC CONDUCTIVITY
spellingShingle Snow
Ice and Permafrost
Hydrology
Limnology and Potamology
*WATER FLOW
*PHASE TRANSFORMATIONS
*FROST HEAVE
HEAT TRANSFER
EQUILIBRIUM(GENERAL)
MASS FLOW
FREEZING
FROZEN SOILS
OSMOTIC PRESSURE
SOIL DYNAMICS
HYDRAULIC PRESSURE
ICE LENSES
HYDRAULIC CONDUCTIVITY
Henry, Karen S.
A Review of the Thermodynamics of Frost Heave
topic_facet Snow
Ice and Permafrost
Hydrology
Limnology and Potamology
*WATER FLOW
*PHASE TRANSFORMATIONS
*FROST HEAVE
HEAT TRANSFER
EQUILIBRIUM(GENERAL)
MASS FLOW
FREEZING
FROZEN SOILS
OSMOTIC PRESSURE
SOIL DYNAMICS
HYDRAULIC PRESSURE
ICE LENSES
HYDRAULIC CONDUCTIVITY
description Thermodynamic equilibrium requires a balance of thermal, mechanical, and chemical forces. The general equation for mechanical equilibrium between two phases describes capillary effects in porous materials, important in both unsaturated water flow and in understanding ice/water interfaces in freezing soil. The Gibbs-Duhem equation, which relates changes in chemical potential of a substance to changes in temperature, pressure, and presence of other chemicals, is of critical importance in understanding the flow of water in freezing soils. Osmotic pressure, related to the chemical potential of the substance, is useful in formulating expressions for total soil water pressure because soil water contains solutes, and the influence of soil particle surfaces can be "approximated" as solutes. It is the gradient in the total soil water pressure that drives flow to the freezing front in soils. The generalized Clapeyron equation is utilized by the thermodynamically based models of Miller (1978) and Gilpin (1980). In these models Fourier's Law and Darcy's Law describe heat and mass transfer in the frozen fringe, respectively, and mass flow and heat flow are coupled by one equation that describes heat transfer in the frozen soil. Ice lenses start to grow when the effective stress in the frozen fringe becomes zero (Miller 1978, Gilpin 1980). Once an ice lens is established, liquid water is removed from the adjacent pores because of phase change, and water flows up through the soil to replenish the liquid water. If the rate of water loss caused by phase change is matched by the rate of water flow to replenish the liquid water, the ice lens will continue to grow in thickness. If the hydraulic conductivity of the soil limits the rate of water replenishment to the ice lens for the given rate of heat loss, soil water will freeze at increasing depths with associated changes in the depth and thickness of the frozen fringe.
author2 ENGINEER RESEARCH AND DEVELOPMENT CENTER HANOVER NH COLD REGIONS RESEARCH AND ENGINEERING LAB
format Text
author Henry, Karen S.
author_facet Henry, Karen S.
author_sort Henry, Karen S.
title A Review of the Thermodynamics of Frost Heave
title_short A Review of the Thermodynamics of Frost Heave
title_full A Review of the Thermodynamics of Frost Heave
title_fullStr A Review of the Thermodynamics of Frost Heave
title_full_unstemmed A Review of the Thermodynamics of Frost Heave
title_sort review of the thermodynamics of frost heave
publishDate 2000
url http://www.dtic.mil/docs/citations/ADA381842
http://oai.dtic.mil/oai/oai?&verb=getRecord&metadataPrefix=html&identifier=ADA381842
genre Ice
permafrost
genre_facet Ice
permafrost
op_source DTIC AND NTIS
op_relation http://www.dtic.mil/docs/citations/ADA381842
op_rights APPROVED FOR PUBLIC RELEASE
_version_ 1766027850070097920