Data from: Differential proteomic responses of selectively bred and wild Sydney rock oyster populations exposed to elevated CO2

Previous work suggests that larvae from Sydney rock oysters that have been selectively bred for fast growth and disease resistance are more resilient to the impacts of ocean acidification than nonselected, wild-type oysters. In this study, we used proteomics to investigate the molecular differences...

Full description

Bibliographic Details
Main Authors: Thompson, Emma L., O'Connor, Wayne, Parker, Laura, Ross, Pauline, Raftos, David A.
Format: Article in Journal/Newspaper
Language:unknown
Published: 2015
Subjects:
Online Access:http://hdl.handle.net/10255/dryad.78552
https://doi.org/10.5061/dryad.mb763
id ftdryad:oai:v1.datadryad.org:10255/dryad.78552
record_format openpolar
spelling ftdryad:oai:v1.datadryad.org:10255/dryad.78552 2023-05-15T17:51:35+02:00 Data from: Differential proteomic responses of selectively bred and wild Sydney rock oyster populations exposed to elevated CO2 Thompson, Emma L. O'Connor, Wayne Parker, Laura Ross, Pauline Raftos, David A. New South Wales Australia 2015-02-12T21:27:39Z http://hdl.handle.net/10255/dryad.78552 https://doi.org/10.5061/dryad.mb763 unknown doi:10.5061/dryad.mb763/1 doi:10.5061/dryad.mb763/2 doi:10.5061/dryad.mb763/3 doi:10.5061/dryad.mb763/4 doi:10.5061/dryad.mb763/5 doi:10.5061/dryad.mb763/6 doi:10.5061/dryad.mb763/7 doi:10.5061/dryad.mb763/8 doi:10.5061/dryad.mb763/9 doi:10.5061/dryad.mb763/10 doi:10.5061/dryad.mb763/11 doi:10.5061/dryad.mb763/12 doi:10.5061/dryad.mb763/13 doi:10.5061/dryad.mb763/14 doi:10.5061/dryad.mb763/15 doi:10.5061/dryad.mb763/16 doi:10.5061/dryad.mb763/17 doi:10.5061/dryad.mb763/18 doi:10.5061/dryad.mb763/19 doi:10.5061/dryad.mb763/20 doi:10.5061/dryad.mb763/21 doi:10.5061/dryad.mb763/22 doi:10.5061/dryad.mb763/23 doi:10.5061/dryad.mb763/24 doi:10.5061/dryad.mb763/25 doi:10.5061/dryad.mb763/26 doi:10.5061/dryad.mb763/27 doi:10.5061/dryad.mb763/28 doi:10.5061/dryad.mb763/29 doi:10.5061/dryad.mb763/30 doi:10.5061/dryad.mb763/31 doi:10.5061/dryad.mb763/32 doi:10.5061/dryad.mb763/33 doi:10.5061/dryad.mb763/34 doi:10.5061/dryad.mb763/35 doi:10.5061/dryad.mb763/36 doi:10.5061/dryad.mb763/37 doi:10.5061/dryad.mb763/38 doi:10.5061/dryad.mb763/39 doi:10.5061/dryad.mb763/40 doi:10.5061/dryad.mb763/41 doi:10.5061/dryad.mb763/42 doi:10.5061/dryad.mb763/43 doi:10.5061/dryad.mb763/44 doi:10.5061/dryad.mb763/45 doi:10.5061/dryad.mb763/46 doi:10.5061/dryad.mb763/47 doi:10.5061/dryad.mb763/48 doi:10.5061/dryad.mb763/49 doi:10.5061/dryad.mb763/50 Climate Change Molluscs Genomics/Proteomics Adaptation Aquaculture Article 2015 ftdryad https://doi.org/10.5061/dryad.mb763 https://doi.org/10.5061/dryad.mb763/1 https://doi.org/10.5061/dryad.mb763/2 https://doi.org/10.5061/dryad.mb763/3 https://doi.org/10.5061/dryad.mb763/4 https://doi.org/10.5061/dryad.mb763/5 https://doi.org/1 2020-01-01T15:15:36Z Previous work suggests that larvae from Sydney rock oysters that have been selectively bred for fast growth and disease resistance are more resilient to the impacts of ocean acidification than nonselected, wild-type oysters. In this study, we used proteomics to investigate the molecular differences between oyster populations in adult Sydney rock oysters and to identify whether these form the basis for observations seen in larvae. Adult oysters from a selective breeding line (B2) and nonselected wild types (WT) were exposed for 4 weeks to elevated pCO2 (856 μatm) before their proteomes were compared to those of oysters held under ambient conditions (375 μatm pCO2). Exposure to elevated pCO2 resulted in substantial changes in the proteomes of oysters from both the selectively bred and wild-type populations. When biological functions were assigned, these differential proteins fell into five broad, potentially interrelated categories of subcellular functions, in both oyster populations. These functional categories were energy production, cellular stress responses, the cytoskeleton, protein synthesis and cell signalling. In the wild-type population, proteins were predominantly upregulated. However, unexpectedly, these cellular systems were downregulated in the selectively bred oyster population, indicating cellular dysfunction. We argue that this reflects a trade-off, whereby an adaptive capacity for enhanced mitochondrial energy production in the selectively bred population may help to protect larvae from the effects of elevated CO2, whilst being deleterious to adult oysters. Article in Journal/Newspaper Ocean acidification Dryad Digital Repository (Duke University)
institution Open Polar
collection Dryad Digital Repository (Duke University)
op_collection_id ftdryad
language unknown
topic Climate Change
Molluscs
Genomics/Proteomics
Adaptation
Aquaculture
spellingShingle Climate Change
Molluscs
Genomics/Proteomics
Adaptation
Aquaculture
Thompson, Emma L.
O'Connor, Wayne
Parker, Laura
Ross, Pauline
Raftos, David A.
Data from: Differential proteomic responses of selectively bred and wild Sydney rock oyster populations exposed to elevated CO2
topic_facet Climate Change
Molluscs
Genomics/Proteomics
Adaptation
Aquaculture
description Previous work suggests that larvae from Sydney rock oysters that have been selectively bred for fast growth and disease resistance are more resilient to the impacts of ocean acidification than nonselected, wild-type oysters. In this study, we used proteomics to investigate the molecular differences between oyster populations in adult Sydney rock oysters and to identify whether these form the basis for observations seen in larvae. Adult oysters from a selective breeding line (B2) and nonselected wild types (WT) were exposed for 4 weeks to elevated pCO2 (856 μatm) before their proteomes were compared to those of oysters held under ambient conditions (375 μatm pCO2). Exposure to elevated pCO2 resulted in substantial changes in the proteomes of oysters from both the selectively bred and wild-type populations. When biological functions were assigned, these differential proteins fell into five broad, potentially interrelated categories of subcellular functions, in both oyster populations. These functional categories were energy production, cellular stress responses, the cytoskeleton, protein synthesis and cell signalling. In the wild-type population, proteins were predominantly upregulated. However, unexpectedly, these cellular systems were downregulated in the selectively bred oyster population, indicating cellular dysfunction. We argue that this reflects a trade-off, whereby an adaptive capacity for enhanced mitochondrial energy production in the selectively bred population may help to protect larvae from the effects of elevated CO2, whilst being deleterious to adult oysters.
format Article in Journal/Newspaper
author Thompson, Emma L.
O'Connor, Wayne
Parker, Laura
Ross, Pauline
Raftos, David A.
author_facet Thompson, Emma L.
O'Connor, Wayne
Parker, Laura
Ross, Pauline
Raftos, David A.
author_sort Thompson, Emma L.
title Data from: Differential proteomic responses of selectively bred and wild Sydney rock oyster populations exposed to elevated CO2
title_short Data from: Differential proteomic responses of selectively bred and wild Sydney rock oyster populations exposed to elevated CO2
title_full Data from: Differential proteomic responses of selectively bred and wild Sydney rock oyster populations exposed to elevated CO2
title_fullStr Data from: Differential proteomic responses of selectively bred and wild Sydney rock oyster populations exposed to elevated CO2
title_full_unstemmed Data from: Differential proteomic responses of selectively bred and wild Sydney rock oyster populations exposed to elevated CO2
title_sort data from: differential proteomic responses of selectively bred and wild sydney rock oyster populations exposed to elevated co2
publishDate 2015
url http://hdl.handle.net/10255/dryad.78552
https://doi.org/10.5061/dryad.mb763
op_coverage New South Wales Australia
genre Ocean acidification
genre_facet Ocean acidification
op_relation doi:10.5061/dryad.mb763/1
doi:10.5061/dryad.mb763/2
doi:10.5061/dryad.mb763/3
doi:10.5061/dryad.mb763/4
doi:10.5061/dryad.mb763/5
doi:10.5061/dryad.mb763/6
doi:10.5061/dryad.mb763/7
doi:10.5061/dryad.mb763/8
doi:10.5061/dryad.mb763/9
doi:10.5061/dryad.mb763/10
doi:10.5061/dryad.mb763/11
doi:10.5061/dryad.mb763/12
doi:10.5061/dryad.mb763/13
doi:10.5061/dryad.mb763/14
doi:10.5061/dryad.mb763/15
doi:10.5061/dryad.mb763/16
doi:10.5061/dryad.mb763/17
doi:10.5061/dryad.mb763/18
doi:10.5061/dryad.mb763/19
doi:10.5061/dryad.mb763/20
doi:10.5061/dryad.mb763/21
doi:10.5061/dryad.mb763/22
doi:10.5061/dryad.mb763/23
doi:10.5061/dryad.mb763/24
doi:10.5061/dryad.mb763/25
doi:10.5061/dryad.mb763/26
doi:10.5061/dryad.mb763/27
doi:10.5061/dryad.mb763/28
doi:10.5061/dryad.mb763/29
doi:10.5061/dryad.mb763/30
doi:10.5061/dryad.mb763/31
doi:10.5061/dryad.mb763/32
doi:10.5061/dryad.mb763/33
doi:10.5061/dryad.mb763/34
doi:10.5061/dryad.mb763/35
doi:10.5061/dryad.mb763/36
doi:10.5061/dryad.mb763/37
doi:10.5061/dryad.mb763/38
doi:10.5061/dryad.mb763/39
doi:10.5061/dryad.mb763/40
doi:10.5061/dryad.mb763/41
doi:10.5061/dryad.mb763/42
doi:10.5061/dryad.mb763/43
doi:10.5061/dryad.mb763/44
doi:10.5061/dryad.mb763/45
doi:10.5061/dryad.mb763/46
doi:10.5061/dryad.mb763/47
doi:10.5061/dryad.mb763/48
doi:10.5061/dryad.mb763/49
doi:10.5061/dryad.mb763/50
op_doi https://doi.org/10.5061/dryad.mb763
https://doi.org/10.5061/dryad.mb763/1
https://doi.org/10.5061/dryad.mb763/2
https://doi.org/10.5061/dryad.mb763/3
https://doi.org/10.5061/dryad.mb763/4
https://doi.org/10.5061/dryad.mb763/5
https://doi.org/1
_version_ 1766158781223272448