Data from: Differential responses to ocean acidification between populations of Balanophyllia elegans corals from high and low upwelling environments

Ocean acidification (OA), the global decrease in surface water pH from absorption of anthropogenic CO2, may put many marine taxa at risk. However, populations that experience extreme localized conditions, and are adapted to these conditions predicted in the global ocean in 2100, may be more tolerant...

Full description

Bibliographic Details
Main Authors: Griffiths, Joanna S., Pan, Francis T., Kelly, Morgan W.
Format: Article in Journal/Newspaper
Language:unknown
Published: 2019
Subjects:
Online Access:http://hdl.handle.net/10255/dryad.181479
https://doi.org/10.5061/dryad.8pg7963
id ftdryad:oai:v1.datadryad.org:10255/dryad.181479
record_format openpolar
spelling ftdryad:oai:v1.datadryad.org:10255/dryad.181479 2023-05-15T17:50:43+02:00 Data from: Differential responses to ocean acidification between populations of Balanophyllia elegans corals from high and low upwelling environments Griffiths, Joanna S. Pan, Francis T. Kelly, Morgan W. California USA Holocene 2019-02-12T20:20:58Z http://hdl.handle.net/10255/dryad.181479 https://doi.org/10.5061/dryad.8pg7963 unknown doi:10.5061/dryad.8pg7963/1 doi:10.5061/dryad.8pg7963/2 doi:10.5061/dryad.8pg7963/3 doi:10.5061/dryad.8pg7963/4 doi:10.5061/dryad.8pg7963/5 doi:10.1111/mec.15050 doi:10.5061/dryad.8pg7963 Griffiths JS, Pan FT, Kelly MW (2019) Differential responses to ocean acidification between populations of Balanophyllia elegans corals from high and low upwelling environments. Molecular Ecology. http://hdl.handle.net/10255/dryad.181479 Article 2019 ftdryad https://doi.org/10.5061/dryad.8pg7963 https://doi.org/10.5061/dryad.8pg7963/1 https://doi.org/10.5061/dryad.8pg7963/2 https://doi.org/10.5061/dryad.8pg7963/3 https://doi.org/10.5061/dryad.8pg7963/4 https://doi.org/10.5061/dryad.8pg7963/5 https 2020-01-01T16:10:03Z Ocean acidification (OA), the global decrease in surface water pH from absorption of anthropogenic CO2, may put many marine taxa at risk. However, populations that experience extreme localized conditions, and are adapted to these conditions predicted in the global ocean in 2100, may be more tolerant to future OA. By identifying locally adapted populations, researchers can examine the mechanisms used to cope with decreasing pH. One oceanographic process that influences pH, is wind driven upwelling. Here we compare two Californian populations of the coral Balanophyllia elegans from distinct upwelling regimes, and test their physiological and transcriptomic responses to experimental seawater acidification. We measured respiration rates, protein and lipid content, and gene expression in corals from both populations exposed to pH levels of 7.8 and 7.4 for 29 days. Corals from the population that experiences lower pH due to high upwelling, maintained the same respiration rate throughout the exposure. In contrast, corals from the low upwelling site had reduced respiration rates, protein content, and lipid-class content at low pH exposure, suggesting they have depleted their energy reserves. Using RNA-Seq, we found that corals from the high upwelling site upregulated genes involved in calcium ion binding and ion transport, most likely related to pH homeostasis and calcification. In contrast, corals from the low upwelling site downregulated stress response genes at low pH exposure. Divergent population responses to low pH observed in B. elegans highlight the importance of multi-population studies for predicting a species’ response to future OA. Article in Journal/Newspaper Ocean acidification Dryad Digital Repository (Duke University)
institution Open Polar
collection Dryad Digital Repository (Duke University)
op_collection_id ftdryad
language unknown
description Ocean acidification (OA), the global decrease in surface water pH from absorption of anthropogenic CO2, may put many marine taxa at risk. However, populations that experience extreme localized conditions, and are adapted to these conditions predicted in the global ocean in 2100, may be more tolerant to future OA. By identifying locally adapted populations, researchers can examine the mechanisms used to cope with decreasing pH. One oceanographic process that influences pH, is wind driven upwelling. Here we compare two Californian populations of the coral Balanophyllia elegans from distinct upwelling regimes, and test their physiological and transcriptomic responses to experimental seawater acidification. We measured respiration rates, protein and lipid content, and gene expression in corals from both populations exposed to pH levels of 7.8 and 7.4 for 29 days. Corals from the population that experiences lower pH due to high upwelling, maintained the same respiration rate throughout the exposure. In contrast, corals from the low upwelling site had reduced respiration rates, protein content, and lipid-class content at low pH exposure, suggesting they have depleted their energy reserves. Using RNA-Seq, we found that corals from the high upwelling site upregulated genes involved in calcium ion binding and ion transport, most likely related to pH homeostasis and calcification. In contrast, corals from the low upwelling site downregulated stress response genes at low pH exposure. Divergent population responses to low pH observed in B. elegans highlight the importance of multi-population studies for predicting a species’ response to future OA.
format Article in Journal/Newspaper
author Griffiths, Joanna S.
Pan, Francis T.
Kelly, Morgan W.
spellingShingle Griffiths, Joanna S.
Pan, Francis T.
Kelly, Morgan W.
Data from: Differential responses to ocean acidification between populations of Balanophyllia elegans corals from high and low upwelling environments
author_facet Griffiths, Joanna S.
Pan, Francis T.
Kelly, Morgan W.
author_sort Griffiths, Joanna S.
title Data from: Differential responses to ocean acidification between populations of Balanophyllia elegans corals from high and low upwelling environments
title_short Data from: Differential responses to ocean acidification between populations of Balanophyllia elegans corals from high and low upwelling environments
title_full Data from: Differential responses to ocean acidification between populations of Balanophyllia elegans corals from high and low upwelling environments
title_fullStr Data from: Differential responses to ocean acidification between populations of Balanophyllia elegans corals from high and low upwelling environments
title_full_unstemmed Data from: Differential responses to ocean acidification between populations of Balanophyllia elegans corals from high and low upwelling environments
title_sort data from: differential responses to ocean acidification between populations of balanophyllia elegans corals from high and low upwelling environments
publishDate 2019
url http://hdl.handle.net/10255/dryad.181479
https://doi.org/10.5061/dryad.8pg7963
op_coverage California USA
Holocene
genre Ocean acidification
genre_facet Ocean acidification
op_relation doi:10.5061/dryad.8pg7963/1
doi:10.5061/dryad.8pg7963/2
doi:10.5061/dryad.8pg7963/3
doi:10.5061/dryad.8pg7963/4
doi:10.5061/dryad.8pg7963/5
doi:10.1111/mec.15050
doi:10.5061/dryad.8pg7963
Griffiths JS, Pan FT, Kelly MW (2019) Differential responses to ocean acidification between populations of Balanophyllia elegans corals from high and low upwelling environments. Molecular Ecology.
http://hdl.handle.net/10255/dryad.181479
op_doi https://doi.org/10.5061/dryad.8pg7963
https://doi.org/10.5061/dryad.8pg7963/1
https://doi.org/10.5061/dryad.8pg7963/2
https://doi.org/10.5061/dryad.8pg7963/3
https://doi.org/10.5061/dryad.8pg7963/4
https://doi.org/10.5061/dryad.8pg7963/5
https
_version_ 1766157593034620928