Glutathione S-Transferase (GSTT1 rs17856199) and Nitric Oxide Synthase (NOS2 rs2297518) Genotype Combination as Potential Oxidative Stress-Related Molecular Markers for Type 2 Diabetes Mellitus

Amani MT Gusti,1,2 Safaa Y Qusti,1 Suhad M Bahijri,3,4 Eman A Toraih,5,6 Samia Bokhari,7 Sami M Attallah,8,9 Abdulwahab Alzahrani,10 Wafaa MA Alshehri,11 Hawazin Alotaibi,12 Manal S Fawzy13,14 1Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; 2Departme...

Full description

Bibliographic Details
Published in:Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy
Main Authors: Gusti,Amani MT, Qusti,Safaa Y, Bahijri,Suhad M, Toraih,Eman A, Bokhari,Samia, Attallah,Sami M, Alzahrani,Abdulwahab, Alshehri,Wafaa MA, Alotaibi,Hawazin, Fawzy,Manal S
Format: Article in Journal/Newspaper
Language:English
Published: Dove Press 2021
Subjects:
Online Access:https://www.dovepress.com/glutathione-s-transferase-gstt1-rs17856199-and-nitric-oxide-synthase-n-peer-reviewed-fulltext-article-DMSO
Description
Summary:Amani MT Gusti,1,2 Safaa Y Qusti,1 Suhad M Bahijri,3,4 Eman A Toraih,5,6 Samia Bokhari,7 Sami M Attallah,8,9 Abdulwahab Alzahrani,10 Wafaa MA Alshehri,11 Hawazin Alotaibi,12 Manal S Fawzy13,14 1Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; 2Department of Medical Laboratory, Biochemistry, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia; 3Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; 4Saudi Diabetes Research Group, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia; 5Department of Surgery, Tulane University, School of Medicine, New Orleans, LA, USA; 6Department of Histology and Cell Biology (Genetics Unit), Faculty of Medicine, Suez Canal University, Ismailia, Egypt; 7Department of Endocrinology and Diabetes, King Fahd Armed Forces Hospital, Jeddah, Saudi Arabia; 8Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt; 9Department of Clinical Pathology, King Fahd Armed Forces Hospital, Jeddah, Saudi Arabia; 10Department of Molecular Biology, King Fahd Armed Forces Hospital, Jeddah, Saudi Arabia; 11Department of Chemistry, Faculty of Science, University of Bisha, Al Namas, Saudi Arabia; 12Ministry of Health, Jeddah, Saudi Arabia; 13Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt; 14Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Kingdom of Saudi ArabiaCorrespondence: Manal S FawzyDepartment of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, 41522, EgyptTel + 20 1008584720Fax + 20 64 3216496Email manal_mohamed@med.suez.edu.egBackground: Deregulation of the antioxidant enzymes was implicated in pathogenesis and complications of type 2 diabetes mellitus (T2DM). The data relate the genetic variants of these enzymes to T2DM are inconsistent among various populations.Purpose: We aimed ...