Interaction between the Westerlies and Asian Monsoons in the Middle Latitudes of China: Review and Prospect

The westerly circulation and the monsoon circulation are the two major atmospheric circulation systems affecting the middle latitudes of the Northern Hemisphere (NH), which have significant impacts on climate and environmental changes in the middle latitudes. However, until now, people’s understandi...

Full description

Bibliographic Details
Published in:Atmosphere
Main Authors: Xiang-Jie Li, Bing-Qi Zhu
Format: Article in Journal/Newspaper
Language:English
Published: MDPI AG 2024
Subjects:
Online Access:https://doi.org/10.3390/atmos15030274
https://doaj.org/article/fd14bea630524fa7a16313d6d78767f9
Description
Summary:The westerly circulation and the monsoon circulation are the two major atmospheric circulation systems affecting the middle latitudes of the Northern Hemisphere (NH), which have significant impacts on climate and environmental changes in the middle latitudes. However, until now, people’s understanding of the long-term paleoenvironmental changes in the westerly- and monsoon-controlled areas in China’s middle latitudes is not uniform, and the phase relationship between the two at different time scales is also controversial, especially the exception to the “dry gets drier, wet gets wetter” paradigm in global warming between the two. Based on the existing literature data published, integrated paleoenvironmental records, and comprehensive simulation results in recent years, this study systematically reviews the climate and environmental changes in the two major circulation regions in the mid-latitudes of China since the Middle Pleistocene, with a focus on exploring the phase relationship between the two systems at different time scales and its influencing mechanism. Through the reanalysis and comparative analysis of the existing data, we conclude that the interaction and relationship between the two circulation systems are relatively strong and close during the warm periods, but relatively weak during the cold periods. From the perspective of orbital, suborbital, and millennium time scales, the phase relationship between the westerly and Asian summer monsoon (ASM) circulations shows roughly in-phase, out-of-phase, and anti-phase transitions, respectively. There are significant differences between the impacts of the westerly and ASM circulations on the middle-latitude regions of northwest China, the Qinghai–Tibet Plateau, and eastern China. However, under the combined influence of varied environmental factors such as BHLSR (boreal high-latitude solar radiation), SST (sea surface temperature), AMOC (north Atlantic meridional overturning circulation), NHI (Northern Hemisphere ice volume), NAO (North Atlantic ...