Lower boundary conditions in land surface models – effects on the permafrost and the carbon pools: a case study with CLM4.5

Earth system models (ESMs) use bottom boundaries for their land surface model (LSM) components which are shallower than the depth reached by surface temperature changes in the centennial timescale associated with recent climate change. Shallow bottom boundaries reflect energy to the surface, which a...

Full description

Bibliographic Details
Published in:Geoscientific Model Development
Main Authors: I. Hermoso de Mendoza, H. Beltrami, A. H. MacDougall, J.-C. Mareschal
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2020
Subjects:
Online Access:https://doi.org/10.5194/gmd-13-1663-2020
https://doaj.org/article/fad5117d59d84182872bce1292f78bee
id ftdoajarticles:oai:doaj.org/article:fad5117d59d84182872bce1292f78bee
record_format openpolar
spelling ftdoajarticles:oai:doaj.org/article:fad5117d59d84182872bce1292f78bee 2023-05-15T17:56:52+02:00 Lower boundary conditions in land surface models – effects on the permafrost and the carbon pools: a case study with CLM4.5 I. Hermoso de Mendoza H. Beltrami A. H. MacDougall J.-C. Mareschal 2020-03-01T00:00:00Z https://doi.org/10.5194/gmd-13-1663-2020 https://doaj.org/article/fad5117d59d84182872bce1292f78bee EN eng Copernicus Publications https://www.geosci-model-dev.net/13/1663/2020/gmd-13-1663-2020.pdf https://doaj.org/toc/1991-959X https://doaj.org/toc/1991-9603 doi:10.5194/gmd-13-1663-2020 1991-959X 1991-9603 https://doaj.org/article/fad5117d59d84182872bce1292f78bee Geoscientific Model Development, Vol 13, Pp 1663-1683 (2020) Geology QE1-996.5 article 2020 ftdoajarticles https://doi.org/10.5194/gmd-13-1663-2020 2022-12-31T07:16:49Z Earth system models (ESMs) use bottom boundaries for their land surface model (LSM) components which are shallower than the depth reached by surface temperature changes in the centennial timescale associated with recent climate change. Shallow bottom boundaries reflect energy to the surface, which along with the lack of geothermal heat flux in current land surface models, alter the surface energy balance and therefore affect some feedback processes between the ground surface and the atmosphere, such as permafrost and soil carbon stability. To evaluate these impacts, we modified the subsurface model in the Community Land Model version 4.5 (CLM4.5) by setting a non-zero crustal heat flux bottom boundary condition uniformly across the model and by increasing the depth of the lower boundary from 42.1 to 342.1 m. The modified and original land models were run during the period 1901–2005 under the historical forcing and between 2005 and 2300 under forcings for two future scenarios of moderate (Representative Concentration Pathway 4.5; RCP4.5) and high (RCP8.5) emissions. Increasing the thickness of the subsurface by 300 m increases the heat stored in the subsurface by 72 ZJ (1 ZJ = 10 21 J) by the year 2300 for the RCP4.5 scenario and 201 ZJ for the RCP8.5 scenario (respective increases of 260 % and 217 % relative to the shallow model), reduces the loss of near-surface permafrost area in the Northern Hemisphere between 1901 and 2300 by 1.6 %–1.9 %, reduces the loss of intermediate-depth permafrost area (above 42.1 m depth) by a factor of 3–5.5 and reduces the loss of soil carbon by 1.6 %–3.6 %. Each increase of 20 mW m −2 of the crustal heat flux increases the temperature at 3.8 m (the soil–bedrock interface) by 0.04±0.01 K. This decreases near-surface permafrost area slightly (0.3 %–0.8 %) and produces local differences in initial stable size of the soil carbon pool across the permafrost region, which reduces the loss of soil carbon across the region by as much as 1.1 %–5.6 % for the two scenarios. Reducing ... Article in Journal/Newspaper permafrost Directory of Open Access Journals: DOAJ Articles Geoscientific Model Development 13 3 1663 1683
institution Open Polar
collection Directory of Open Access Journals: DOAJ Articles
op_collection_id ftdoajarticles
language English
topic Geology
QE1-996.5
spellingShingle Geology
QE1-996.5
I. Hermoso de Mendoza
H. Beltrami
A. H. MacDougall
J.-C. Mareschal
Lower boundary conditions in land surface models – effects on the permafrost and the carbon pools: a case study with CLM4.5
topic_facet Geology
QE1-996.5
description Earth system models (ESMs) use bottom boundaries for their land surface model (LSM) components which are shallower than the depth reached by surface temperature changes in the centennial timescale associated with recent climate change. Shallow bottom boundaries reflect energy to the surface, which along with the lack of geothermal heat flux in current land surface models, alter the surface energy balance and therefore affect some feedback processes between the ground surface and the atmosphere, such as permafrost and soil carbon stability. To evaluate these impacts, we modified the subsurface model in the Community Land Model version 4.5 (CLM4.5) by setting a non-zero crustal heat flux bottom boundary condition uniformly across the model and by increasing the depth of the lower boundary from 42.1 to 342.1 m. The modified and original land models were run during the period 1901–2005 under the historical forcing and between 2005 and 2300 under forcings for two future scenarios of moderate (Representative Concentration Pathway 4.5; RCP4.5) and high (RCP8.5) emissions. Increasing the thickness of the subsurface by 300 m increases the heat stored in the subsurface by 72 ZJ (1 ZJ = 10 21 J) by the year 2300 for the RCP4.5 scenario and 201 ZJ for the RCP8.5 scenario (respective increases of 260 % and 217 % relative to the shallow model), reduces the loss of near-surface permafrost area in the Northern Hemisphere between 1901 and 2300 by 1.6 %–1.9 %, reduces the loss of intermediate-depth permafrost area (above 42.1 m depth) by a factor of 3–5.5 and reduces the loss of soil carbon by 1.6 %–3.6 %. Each increase of 20 mW m −2 of the crustal heat flux increases the temperature at 3.8 m (the soil–bedrock interface) by 0.04±0.01 K. This decreases near-surface permafrost area slightly (0.3 %–0.8 %) and produces local differences in initial stable size of the soil carbon pool across the permafrost region, which reduces the loss of soil carbon across the region by as much as 1.1 %–5.6 % for the two scenarios. Reducing ...
format Article in Journal/Newspaper
author I. Hermoso de Mendoza
H. Beltrami
A. H. MacDougall
J.-C. Mareschal
author_facet I. Hermoso de Mendoza
H. Beltrami
A. H. MacDougall
J.-C. Mareschal
author_sort I. Hermoso de Mendoza
title Lower boundary conditions in land surface models – effects on the permafrost and the carbon pools: a case study with CLM4.5
title_short Lower boundary conditions in land surface models – effects on the permafrost and the carbon pools: a case study with CLM4.5
title_full Lower boundary conditions in land surface models – effects on the permafrost and the carbon pools: a case study with CLM4.5
title_fullStr Lower boundary conditions in land surface models – effects on the permafrost and the carbon pools: a case study with CLM4.5
title_full_unstemmed Lower boundary conditions in land surface models – effects on the permafrost and the carbon pools: a case study with CLM4.5
title_sort lower boundary conditions in land surface models – effects on the permafrost and the carbon pools: a case study with clm4.5
publisher Copernicus Publications
publishDate 2020
url https://doi.org/10.5194/gmd-13-1663-2020
https://doaj.org/article/fad5117d59d84182872bce1292f78bee
genre permafrost
genre_facet permafrost
op_source Geoscientific Model Development, Vol 13, Pp 1663-1683 (2020)
op_relation https://www.geosci-model-dev.net/13/1663/2020/gmd-13-1663-2020.pdf
https://doaj.org/toc/1991-959X
https://doaj.org/toc/1991-9603
doi:10.5194/gmd-13-1663-2020
1991-959X
1991-9603
https://doaj.org/article/fad5117d59d84182872bce1292f78bee
op_doi https://doi.org/10.5194/gmd-13-1663-2020
container_title Geoscientific Model Development
container_volume 13
container_issue 3
container_start_page 1663
op_container_end_page 1683
_version_ 1766165177521143808