Magnesium silicate chimneys at the Strytan hydrothermal field, Iceland, as analogues for prebiotic chemistry at alkaline submarine hydrothermal vents on the early Earth

Abstract The Strytan Hydrothermal Field (SHF) in basaltic terrain in Iceland is one of the extant alkaline submarine hydrothermal vent systems favoured as analogues for where life on Earth may have begun. To test this hypothesis we analyse the composition, structure, and mineralogy of samples from h...

Full description

Bibliographic Details
Published in:Progress in Earth and Planetary Science
Main Authors: Carlos Gutiérrez-Ariza, Laura M. Barge, Yang Ding, Silvana S. S. Cardoso, Shawn Erin McGlynn, Ryuhei Nakamura, Donato Giovanelli, Roy Price, Hye Eun Lee, F. Javier Huertas, C. Ignacio Sainz-Díaz, Julyan H. E. Cartwright
Format: Article in Journal/Newspaper
Language:English
Published: SpringerOpen 2024
Subjects:
G
Online Access:https://doi.org/10.1186/s40645-023-00603-w
https://doaj.org/article/f847d77faa2544d2bf511fe7ea76630c
Description
Summary:Abstract The Strytan Hydrothermal Field (SHF) in basaltic terrain in Iceland is one of the extant alkaline submarine hydrothermal vent systems favoured as analogues for where life on Earth may have begun. To test this hypothesis we analyse the composition, structure, and mineralogy of samples from hydrothermal chimneys generated at the SHF. We find that the chimney precipitates are composed of Mg-silicates including clays of the saponite-stevensite group (high Mg and Si, low Fe and Al), Ca-carbonates and Ca-sulfates. The chimneys comprise permeable structures with pores sizes down to 1 µm or less. Their complex interiors as observed with SEM (Scanning Electron Microscopy) and X-ray CT (computed tomography scanning), exhibit high internal surface areas. EDX (energy-dispersive X-ray spectroscopy) analysis reveals an increase in the Mg/Si ratio toward the chimney exteriors. Chemical garden analogue experiments produce similar Mg–silicate chimneys with porous internal structures, indicating that injection-precipitation experiments can be high-fidelity analogues for natural hydrothermal chimneys at the SHF. We conclude that SHF chimneys could have facilitated prebiotic reactions comparable to those proposed for clays and silica gels at putative Hadean to Eoarchean alkaline vents. Analysis of the fluid dynamics shows that these chimneys are intermediate in growth rate compared to faster black smokers though slower than those at Lost City. The SHF is proposed as a prebiotic alkaline vent analogue for basaltic terrains on the early Earth.