Contemporary diets of walruses in Bristol Bay, Alaska suggest temporal variability in benthic community structure

Background Pacific walruses (Odobenus rosmarus divergens) are a conspicuous and important component of the Bristol Bay ecosystem and human social systems, but very little is known about walrus ecology in this region, principally their feeding ecology. The present work provides contemporary data on t...

Full description

Bibliographic Details
Published in:PeerJ
Main Authors: John M. Maniscalco, Alan M. Springer, Katrina L. Counihan, Tuula Hollmen, Helen M. Aderman, Moses Toyukak, Sr.
Format: Article in Journal/Newspaper
Language:English
Published: PeerJ Inc. 2020
Subjects:
R
Online Access:https://doi.org/10.7717/peerj.8735
https://doaj.org/article/f7e6e21667914656a910a2c884fa3134
Description
Summary:Background Pacific walruses (Odobenus rosmarus divergens) are a conspicuous and important component of the Bristol Bay ecosystem and human social systems, but very little is known about walrus ecology in this region, principally their feeding ecology. The present work provides contemporary data on the diets of walruses at four haulout locations throughout Bristol Bay between 2014 and 2018. Methods We analyzed scat and gastrointestinal tract samples from these animals using quantitative polymerase chain reaction to amplify prey DNA, which allowed for diet estimates based on frequencies of prey item occurrence and on the relative importance of dietary items as determined from DNA threshold cycle scores. Results Diets were highly diverse at all locations, but with some variation in composition that may be related to the time of year that samples were collected (summer vs. autumn), or to spatial variability in the distribution of prey. Overall, polychaetes and tunicates had the highest frequencies of occurrence and relative abundances in 2014–15, but a major change in diet appears to have occurred by 2017–18. While some sample sizes were small, diets in these later years contrasted sharply, with a greater prevalence of sea cucumbers and mollusks, and reduced importance of decapods and fishes compared to the earlier years. Prey identified in scat samples from one collection site also contrasted sharply with those reported from the same location in 1981. The apparent temporal shifts in walrus prey may represent a changing benthic ecosystem due to warming waters in recent decades.