Observed small spatial scale and seasonal variability of the CO 2 system in the Southern Ocean
The considerable uncertainties in the carbon budget of the Southern Ocean are largely attributed to unresolved variability, in particular at a seasonal timescale and small spatial scale (~ 100 km). In this study, the variability of surface p CO 2 and dissolved inorganic carbon (DIC) at seasonal and...
Published in: | Biogeosciences |
---|---|
Main Authors: | , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Copernicus Publications
2014
|
Subjects: | |
Online Access: | https://doi.org/10.5194/bg-11-75-2014 https://doaj.org/article/f646798d66584239b2c3861f9580242f |
id |
ftdoajarticles:oai:doaj.org/article:f646798d66584239b2c3861f9580242f |
---|---|
record_format |
openpolar |
spelling |
ftdoajarticles:oai:doaj.org/article:f646798d66584239b2c3861f9580242f 2023-05-15T18:24:51+02:00 Observed small spatial scale and seasonal variability of the CO 2 system in the Southern Ocean L. Resplandy J. Boutin L. Merlivat 2014-01-01T00:00:00Z https://doi.org/10.5194/bg-11-75-2014 https://doaj.org/article/f646798d66584239b2c3861f9580242f EN eng Copernicus Publications http://www.biogeosciences.net/11/75/2014/bg-11-75-2014.pdf https://doaj.org/toc/1726-4170 https://doaj.org/toc/1726-4189 1726-4170 1726-4189 doi:10.5194/bg-11-75-2014 https://doaj.org/article/f646798d66584239b2c3861f9580242f Biogeosciences, Vol 11, Iss 1, Pp 75-90 (2014) Ecology QH540-549.5 Life QH501-531 Geology QE1-996.5 article 2014 ftdoajarticles https://doi.org/10.5194/bg-11-75-2014 2022-12-31T03:13:19Z The considerable uncertainties in the carbon budget of the Southern Ocean are largely attributed to unresolved variability, in particular at a seasonal timescale and small spatial scale (~ 100 km). In this study, the variability of surface p CO 2 and dissolved inorganic carbon (DIC) at seasonal and small spatial scales is examined using a data set of surface drifters including ~ 80 000 measurements at high spatiotemporal resolution. On spatial scales of 100 km, we find gradients ranging from 5 to 50 μatm for p CO 2 and 2 to 30 μmol kg −1 for DIC, with highest values in energetic and frontal regions. This result is supported by a second estimate obtained with sea surface temperature (SST) satellite images and local DIC–SST relationships derived from drifter observations. We find that dynamical processes drive the variability of DIC at small spatial scale in most regions of the Southern Ocean and the cascade of large-scale gradients down to small spatial scales, leading to gradients up to 15 μmol kg −1 over 100 km. Although the role of biological activity is more localized, it enhances the variability up to 30 μmol kg −1 over 100 km. The seasonal cycle of surface DIC is reconstructed following Mahadevan et al. (2011), using an annual climatology of DIC and a monthly climatology of mixed layer depth. This method is evaluated using drifter observations and proves to be a reasonable first-order estimate of the seasonality in the Southern Ocean that could be used to validate model simulations. We find that small spatial-scale structures are a non-negligible source of variability for DIC, with amplitudes of about a third of the variations associated with the seasonality and up to 10 times the magnitude of large-scale gradients. The amplitude of small-scale variability reported here should be kept in mind when inferring temporal changes (seasonality, interannual variability, decadal trends) of the carbon budget from low-resolution observations and models. Article in Journal/Newspaper Southern Ocean Directory of Open Access Journals: DOAJ Articles Southern Ocean Biogeosciences 11 1 75 90 |
institution |
Open Polar |
collection |
Directory of Open Access Journals: DOAJ Articles |
op_collection_id |
ftdoajarticles |
language |
English |
topic |
Ecology QH540-549.5 Life QH501-531 Geology QE1-996.5 |
spellingShingle |
Ecology QH540-549.5 Life QH501-531 Geology QE1-996.5 L. Resplandy J. Boutin L. Merlivat Observed small spatial scale and seasonal variability of the CO 2 system in the Southern Ocean |
topic_facet |
Ecology QH540-549.5 Life QH501-531 Geology QE1-996.5 |
description |
The considerable uncertainties in the carbon budget of the Southern Ocean are largely attributed to unresolved variability, in particular at a seasonal timescale and small spatial scale (~ 100 km). In this study, the variability of surface p CO 2 and dissolved inorganic carbon (DIC) at seasonal and small spatial scales is examined using a data set of surface drifters including ~ 80 000 measurements at high spatiotemporal resolution. On spatial scales of 100 km, we find gradients ranging from 5 to 50 μatm for p CO 2 and 2 to 30 μmol kg −1 for DIC, with highest values in energetic and frontal regions. This result is supported by a second estimate obtained with sea surface temperature (SST) satellite images and local DIC–SST relationships derived from drifter observations. We find that dynamical processes drive the variability of DIC at small spatial scale in most regions of the Southern Ocean and the cascade of large-scale gradients down to small spatial scales, leading to gradients up to 15 μmol kg −1 over 100 km. Although the role of biological activity is more localized, it enhances the variability up to 30 μmol kg −1 over 100 km. The seasonal cycle of surface DIC is reconstructed following Mahadevan et al. (2011), using an annual climatology of DIC and a monthly climatology of mixed layer depth. This method is evaluated using drifter observations and proves to be a reasonable first-order estimate of the seasonality in the Southern Ocean that could be used to validate model simulations. We find that small spatial-scale structures are a non-negligible source of variability for DIC, with amplitudes of about a third of the variations associated with the seasonality and up to 10 times the magnitude of large-scale gradients. The amplitude of small-scale variability reported here should be kept in mind when inferring temporal changes (seasonality, interannual variability, decadal trends) of the carbon budget from low-resolution observations and models. |
format |
Article in Journal/Newspaper |
author |
L. Resplandy J. Boutin L. Merlivat |
author_facet |
L. Resplandy J. Boutin L. Merlivat |
author_sort |
L. Resplandy |
title |
Observed small spatial scale and seasonal variability of the CO 2 system in the Southern Ocean |
title_short |
Observed small spatial scale and seasonal variability of the CO 2 system in the Southern Ocean |
title_full |
Observed small spatial scale and seasonal variability of the CO 2 system in the Southern Ocean |
title_fullStr |
Observed small spatial scale and seasonal variability of the CO 2 system in the Southern Ocean |
title_full_unstemmed |
Observed small spatial scale and seasonal variability of the CO 2 system in the Southern Ocean |
title_sort |
observed small spatial scale and seasonal variability of the co 2 system in the southern ocean |
publisher |
Copernicus Publications |
publishDate |
2014 |
url |
https://doi.org/10.5194/bg-11-75-2014 https://doaj.org/article/f646798d66584239b2c3861f9580242f |
geographic |
Southern Ocean |
geographic_facet |
Southern Ocean |
genre |
Southern Ocean |
genre_facet |
Southern Ocean |
op_source |
Biogeosciences, Vol 11, Iss 1, Pp 75-90 (2014) |
op_relation |
http://www.biogeosciences.net/11/75/2014/bg-11-75-2014.pdf https://doaj.org/toc/1726-4170 https://doaj.org/toc/1726-4189 1726-4170 1726-4189 doi:10.5194/bg-11-75-2014 https://doaj.org/article/f646798d66584239b2c3861f9580242f |
op_doi |
https://doi.org/10.5194/bg-11-75-2014 |
container_title |
Biogeosciences |
container_volume |
11 |
container_issue |
1 |
container_start_page |
75 |
op_container_end_page |
90 |
_version_ |
1766205813552054272 |