Numerical Modeling of Atmospheric Temperature and Stratospheric Ozone Sensitivity to Sea Surface Temperature Variability

The results of numerical experiments with a chemistry–climate model of the lower and middle atmosphere are presented to study the sensitivity of the polar stratosphere of the Northern and Southern Hemispheres to sea surface temperature (SST) variability, both as a result of interannual variability a...

Full description

Bibliographic Details
Published in:Climate
Main Authors: Sergei P. Smyshlyaev, Andrew R. Jakovlev, Vener Ya Galin
Format: Article in Journal/Newspaper
Language:English
Published: MDPI AG 2024
Subjects:
Q
Online Access:https://doi.org/10.3390/cli12060079
https://doaj.org/article/f521ff0c20f0492c81a42e72109bc65a
Description
Summary:The results of numerical experiments with a chemistry–climate model of the lower and middle atmosphere are presented to study the sensitivity of the polar stratosphere of the Northern and Southern Hemispheres to sea surface temperature (SST) variability, both as a result of interannual variability associated with the Southern Oscillation, and because of long-term increases in SST under global warming. An analysis of the results of model experiments showed that for both scenarios of SST changes, the response of the polar stratosphere for the Northern and Southern Hemispheres is very different. In the Arctic, during the El Niño phase, conditions are created for the polar vortex to become less stable, and in the Antarctic, on the contrary, for it to become more stable, which is expressed in a weakening of the zonal wind in the winter in the Arctic and its increase in the Antarctic, followed by a spring decrease in temperature and concentration of ozone in the Antarctic and their increase in the Arctic. Global warming creates a tendency for the polar vortex to weaken in winter in the Arctic and strengthen it in the Antarctic. As a result, in the Antarctic, the concentration of ozone in the polar stratosphere decreases both in winter (June–August) and, especially, in spring (September–November). Global warming may hinder ozone recovery which is expected as a result of the reduced emissions of ozone-depleting substances. The model results demonstrate the dominant influence of Brewer–Dobson circulation variability on temperature and ozone in the polar stratosphere compared with changes in wave activity, both with changes in SST in the Southern Oscillation and with increases in SST due to global warming.