Association studies between chromosomal regions 1q21.3, 5q21.3, 14q21.2 and 17q21.31 and numbers of children in Poland

Abstract Number of children is an important human trait and studies have indicated associations with single-nucleotide polymorphisms (SNPs). Aim: to give further evidence for four associations using a large sample of Polish subjects. Data from the POPULOUS genetic database was provided from anonymou...

Full description

Bibliographic Details
Published in:Scientific Reports
Main Authors: Jeremy S. C. Clark, Thierry van de Wetering, Błażej Marciniak, Elżbieta Żądzińska, Andrzej Ciechanowicz, Mariusz Kaczmarczyk, Agnieszka Boroń, Kamila Rydzewska, Konrad Posiadło, Dominik Strapagiel
Format: Article in Journal/Newspaper
Language:English
Published: Nature Portfolio 2022
Subjects:
R
Q
Online Access:https://doi.org/10.1038/s41598-022-21638-x
https://doaj.org/article/f0949f56338b44588357aa6c01132dae
Description
Summary:Abstract Number of children is an important human trait and studies have indicated associations with single-nucleotide polymorphisms (SNPs). Aim: to give further evidence for four associations using a large sample of Polish subjects. Data from the POPULOUS genetic database was provided from anonymous, healthy, unrelated, Polish volunteers of both sexes (N = 5760). SNPs (n = 173) studied: (a) 69 from the chromosome 17 H1/H2 inversion; (b) six from 1q21.3, 5q21.3 and 14q21.2; and (c) 98 random negative controls. Zero-inflated negative-binomial regression (z.i.) was performed (0–3 numbers of children per individual (NCI) set as non-events; adjustors: year of birth, sex). Significance level p = 0.05 with Bonferroni correction. Statistically-significant differences (with data from both sexes combined) were obtained from highly-linked inversion SNPs: representative rs12373123 gave means: homozygotes TT: 2.31 NCI (n = 1418); heterozygotes CT: 2.35 NCI (n = 554); homozygotes CC: 2.44 NCI (n = 43) (genotype p = 0.01; TTvs.CC p = 0.004; CTvs.CC p = 0.009). (Male data alone gave similar results.) Recessive modeling indicated that H2-homozygotes had 0.118 more children than H1-homozygotes + heterozygotes (z.i.-count estimates ± standard errors: CT, − 0.508 ± 0.194; TT, − 0.557 ± 0.191). The non-over-dispersed count model detected no interactions: of importance there was no significant interaction with age. No positive results were obtained from negative-control SNPs or (b). Conclusions: association between the H1/H2 inversion and numbers of children (previously reported in Iceland) has been confirmed, albeit using a different statistical model. One limitation is the small amount of data, despite initially ~ 6000 subjects. Causal studies require further investigation.