Genetic variants of RNASE3 (ECP) and susceptibility to severe malaria in Senegalese population

Abstract Background Severe forms of malaria (SM) are an outcome of Plasmodium falciparum infection and can cause death especially in children under 4 years of age. RNASE3 (ECP) has been identified as an inhibitor of Plasmodium parasites growth in vitro, and genetic analysis in hospitalized Ghanaian...

Full description

Bibliographic Details
Published in:Malaria Journal
Main Authors: Gora Diop, Céline Derbois, Cheikh Loucoubar, Babacar Mbengue, Bineta Niakhana Ndao, Fatou Thiam, Alassane Thiam, Rokhaya Ndiaye, Yakhya Dieye, Robert Olaso, Jean-Francois Deleuze, Alioune Dieye
Format: Article in Journal/Newspaper
Language:English
Published: BMC 2018
Subjects:
Online Access:https://doi.org/10.1186/s12936-018-2205-9
https://doaj.org/article/ed5cfb85490a483683c263f98fba2dbd
Description
Summary:Abstract Background Severe forms of malaria (SM) are an outcome of Plasmodium falciparum infection and can cause death especially in children under 4 years of age. RNASE3 (ECP) has been identified as an inhibitor of Plasmodium parasites growth in vitro, and genetic analysis in hospitalized Ghanaian subjects has revealed the RNASE3 +371G/C (rs2073342) polymorphism as a susceptibility factor for cerebral malaria. The +371 C allele results in an Arg/Thr mutation that abolishes the cytotoxic activity of the ECP protein. The present study aims to investigate RNASE3 gene polymorphisms and their putative link to severe malaria in a malaria cohort from Senegal. Methods/results Patients enrolled from hospitals were classified as having either uncomplicated (UM) or severe malaria (SM). The analysis of the RNASE3 gene polymorphisms was performed in 241 subjects: 178 falciparum infected (96 SM, 82 UM) and 63 non-infected subjects as population control group (CTR). Six frequent SNPs (MAF > 3%) were identified, and one SNP was associated with malaria severity by performing a logistic regression analysis SM vs.UM: RNASE3 +499G/C (rs2233860) under age, sex as covariates and HbS/HbC polymorphisms adjustment (p = 0.003, OR 0.43, CI 95% 0.20–0.92). The polymorphisms: +371G/C (rs2073342), +499G/C (rs2233860) and +577A/T (rs8019343) defined a haplotype risk (G-G-T) for malaria severity (Fisher exact test, p = 0.03) (OR 4.1, IC 95% (1.1–14.9). Conclusion In addition to the previously described association of +371G/C polymorphism in Ghanaians cohort, the RNASE3 +499G/C polymorphism was associated with susceptibility to SM in a Senegalese population. The haplotype +371G/+499G/+577T defined by RNASE3 polymorphisms was associated with severity. The genetic association identified independently in the Senegalese population provide additional evidence of a role of RNASE3 (ECP) in malaria severity.