MPAS-Seaice (v1.0.0): sea-ice dynamics on unstructured Voronoi meshes

We present MPAS-Seaice, a sea-ice model which uses the Model for Prediction Across Scales (MPAS) framework and spherical centroidal Voronoi tessellation (SCVT) unstructured meshes. As well as SCVT meshes, MPAS-Seaice can run on the traditional quadrilateral grids used by sea-ice models such as CICE....

Full description

Bibliographic Details
Published in:Geoscientific Model Development
Main Authors: A. K. Turner, W. H. Lipscomb, E. C. Hunke, D. W. Jacobsen, N. Jeffery, D. Engwirda, T. D. Ringler, J. D. Wolfe
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2022
Subjects:
Online Access:https://doi.org/10.5194/gmd-15-3721-2022
https://doaj.org/article/eca566836f0141ed9d98836d08f3ae5a
id ftdoajarticles:oai:doaj.org/article:eca566836f0141ed9d98836d08f3ae5a
record_format openpolar
spelling ftdoajarticles:oai:doaj.org/article:eca566836f0141ed9d98836d08f3ae5a 2023-05-15T18:17:31+02:00 MPAS-Seaice (v1.0.0): sea-ice dynamics on unstructured Voronoi meshes A. K. Turner W. H. Lipscomb E. C. Hunke D. W. Jacobsen N. Jeffery D. Engwirda T. D. Ringler J. D. Wolfe 2022-05-01T00:00:00Z https://doi.org/10.5194/gmd-15-3721-2022 https://doaj.org/article/eca566836f0141ed9d98836d08f3ae5a EN eng Copernicus Publications https://gmd.copernicus.org/articles/15/3721/2022/gmd-15-3721-2022.pdf https://doaj.org/toc/1991-959X https://doaj.org/toc/1991-9603 doi:10.5194/gmd-15-3721-2022 1991-959X 1991-9603 https://doaj.org/article/eca566836f0141ed9d98836d08f3ae5a Geoscientific Model Development, Vol 15, Pp 3721-3751 (2022) Geology QE1-996.5 article 2022 ftdoajarticles https://doi.org/10.5194/gmd-15-3721-2022 2022-12-31T03:08:12Z We present MPAS-Seaice, a sea-ice model which uses the Model for Prediction Across Scales (MPAS) framework and spherical centroidal Voronoi tessellation (SCVT) unstructured meshes. As well as SCVT meshes, MPAS-Seaice can run on the traditional quadrilateral grids used by sea-ice models such as CICE. The MPAS-Seaice velocity solver uses the elastic–viscous–plastic (EVP) rheology and the variational discretization of the internal stress divergence operator used by CICE, but adapted for the polygonal cells of MPAS meshes, or alternatively an integral (“finite-volume”) formulation of the stress divergence operator. An incremental remapping advection scheme is used for mass and tracer transport. We validate these formulations with idealized test cases, both planar and on the sphere. The variational scheme displays lower errors than the finite-volume formulation for the strain rate operator but higher errors for the stress divergence operator. The variational stress divergence operator displays increased errors around the pentagonal cells of a quasi-uniform mesh, which is ameliorated with an alternate formulation for the operator. MPAS-Seaice shares the sophisticated column physics and biogeochemistry of CICE and when used with quadrilateral meshes can reproduce the results of CICE. We have used global simulations with realistic forcing to validate MPAS-Seaice against similar simulations with CICE and against observations. We find very similar results compared to CICE, with differences explained by minor differences in implementation such as with interpolation between the primary and dual meshes at coastlines. We have assessed the computational performance of the model, which, because it is unstructured, runs with 70 % of the throughput of CICE for a comparison quadrilateral simulation. The SCVT meshes used by MPAS-Seaice allow removal of equatorial model cells and flexibility in domain decomposition, improving model performance. MPAS-Seaice is the current sea-ice component of the Energy Exascale Earth System Model ... Article in Journal/Newspaper Sea ice Directory of Open Access Journals: DOAJ Articles Geoscientific Model Development 15 9 3721 3751
institution Open Polar
collection Directory of Open Access Journals: DOAJ Articles
op_collection_id ftdoajarticles
language English
topic Geology
QE1-996.5
spellingShingle Geology
QE1-996.5
A. K. Turner
W. H. Lipscomb
E. C. Hunke
D. W. Jacobsen
N. Jeffery
D. Engwirda
T. D. Ringler
J. D. Wolfe
MPAS-Seaice (v1.0.0): sea-ice dynamics on unstructured Voronoi meshes
topic_facet Geology
QE1-996.5
description We present MPAS-Seaice, a sea-ice model which uses the Model for Prediction Across Scales (MPAS) framework and spherical centroidal Voronoi tessellation (SCVT) unstructured meshes. As well as SCVT meshes, MPAS-Seaice can run on the traditional quadrilateral grids used by sea-ice models such as CICE. The MPAS-Seaice velocity solver uses the elastic–viscous–plastic (EVP) rheology and the variational discretization of the internal stress divergence operator used by CICE, but adapted for the polygonal cells of MPAS meshes, or alternatively an integral (“finite-volume”) formulation of the stress divergence operator. An incremental remapping advection scheme is used for mass and tracer transport. We validate these formulations with idealized test cases, both planar and on the sphere. The variational scheme displays lower errors than the finite-volume formulation for the strain rate operator but higher errors for the stress divergence operator. The variational stress divergence operator displays increased errors around the pentagonal cells of a quasi-uniform mesh, which is ameliorated with an alternate formulation for the operator. MPAS-Seaice shares the sophisticated column physics and biogeochemistry of CICE and when used with quadrilateral meshes can reproduce the results of CICE. We have used global simulations with realistic forcing to validate MPAS-Seaice against similar simulations with CICE and against observations. We find very similar results compared to CICE, with differences explained by minor differences in implementation such as with interpolation between the primary and dual meshes at coastlines. We have assessed the computational performance of the model, which, because it is unstructured, runs with 70 % of the throughput of CICE for a comparison quadrilateral simulation. The SCVT meshes used by MPAS-Seaice allow removal of equatorial model cells and flexibility in domain decomposition, improving model performance. MPAS-Seaice is the current sea-ice component of the Energy Exascale Earth System Model ...
format Article in Journal/Newspaper
author A. K. Turner
W. H. Lipscomb
E. C. Hunke
D. W. Jacobsen
N. Jeffery
D. Engwirda
T. D. Ringler
J. D. Wolfe
author_facet A. K. Turner
W. H. Lipscomb
E. C. Hunke
D. W. Jacobsen
N. Jeffery
D. Engwirda
T. D. Ringler
J. D. Wolfe
author_sort A. K. Turner
title MPAS-Seaice (v1.0.0): sea-ice dynamics on unstructured Voronoi meshes
title_short MPAS-Seaice (v1.0.0): sea-ice dynamics on unstructured Voronoi meshes
title_full MPAS-Seaice (v1.0.0): sea-ice dynamics on unstructured Voronoi meshes
title_fullStr MPAS-Seaice (v1.0.0): sea-ice dynamics on unstructured Voronoi meshes
title_full_unstemmed MPAS-Seaice (v1.0.0): sea-ice dynamics on unstructured Voronoi meshes
title_sort mpas-seaice (v1.0.0): sea-ice dynamics on unstructured voronoi meshes
publisher Copernicus Publications
publishDate 2022
url https://doi.org/10.5194/gmd-15-3721-2022
https://doaj.org/article/eca566836f0141ed9d98836d08f3ae5a
genre Sea ice
genre_facet Sea ice
op_source Geoscientific Model Development, Vol 15, Pp 3721-3751 (2022)
op_relation https://gmd.copernicus.org/articles/15/3721/2022/gmd-15-3721-2022.pdf
https://doaj.org/toc/1991-959X
https://doaj.org/toc/1991-9603
doi:10.5194/gmd-15-3721-2022
1991-959X
1991-9603
https://doaj.org/article/eca566836f0141ed9d98836d08f3ae5a
op_doi https://doi.org/10.5194/gmd-15-3721-2022
container_title Geoscientific Model Development
container_volume 15
container_issue 9
container_start_page 3721
op_container_end_page 3751
_version_ 1766191777915600896