Transmission competence of a new mesonivirus, Yichang virus, in mosquitoes and its interference with representative flaviviruses.

Advances in technology have greatly stimulated the understanding of insect-specific viruses (ISVs). Unfortunately, most of these findings are based on sequencing technology, and laboratory data are scarce on the transmission dynamics of ISVs in nature and the potential effects of these viruses on ar...

Full description

Bibliographic Details
Published in:PLOS Neglected Tropical Diseases
Main Authors: Guoguo Ye, Yujuan Wang, Xiaoyun Liu, Qiannan Dong, Quanxin Cai, Zhiming Yuan, Han Xia
Format: Article in Journal/Newspaper
Language:English
Published: Public Library of Science (PLoS) 2020
Subjects:
Online Access:https://doi.org/10.1371/journal.pntd.0008920
https://doaj.org/article/ec011a1da26b41ad80e9996410f0eb35
Description
Summary:Advances in technology have greatly stimulated the understanding of insect-specific viruses (ISVs). Unfortunately, most of these findings are based on sequencing technology, and laboratory data are scarce on the transmission dynamics of ISVs in nature and the potential effects of these viruses on arboviruses. Mesonivirus is a class of ISVs with a wide geographical distribution. Recently, our laboratory reported the isolation of a novel strain of mesonivirus, Yichang virus (YCV), from Culex mosquitoes, China. In this study, the experimental infection of YCV by the oral route for adult and larvae mosquitoes, and the vertical transmission has been conducted, which suggests that YCV could adopt a mixed-mode transmission. Controlled experiments showed that the infectivity of YCV depends on the mosquito species, virus dose, and infection route. The proliferation curve and tissue distribution of YCV in Cx. quinquefasciatus and Ae. albopictus showed that YCV is more susceptible to Ae. albopictus and is located in the midgut. Furthermore, we also assessed the interference of YCV with flaviviruses both in vitro and in vivo. YCV significantly inhibited the proliferation of DENV-2 and ZIKV, in cell culture, and reduced transmission rate of DENV-2 in Ae. albopictus. Our work provides insights into the transmission of ISVs in different mosquito species during ontogeny and their potential ability to interact with mosquito-borne viruses.