Estimating Permafrost Distribution Using Co‐Located Temperature and Electrical Resistivity Measurements

Abstract Assessing the lateral and vertical extent of permafrost is critical to understanding the fate of Arctic ecosystems under climate change. Yet, direct measurements of permafrost distribution and temperature are often limited to a small number of borehole locations. Here, we assess the use of...

Full description

Bibliographic Details
Published in:Geophysical Research Letters
Main Authors: S. Uhlemann, I. Shirley, S. Wielandt, C. Ulrich, C. Wang, S. Fiolleau, J. Peterson, J. Lamb, E. Thaler, J. Rowland, S. S. Hubbard, B. Dafflon
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 2023
Subjects:
Online Access:https://doi.org/10.1029/2023GL103987
https://doaj.org/article/eb925850bf6444efbbccfe2aec98dbf8
id ftdoajarticles:oai:doaj.org/article:eb925850bf6444efbbccfe2aec98dbf8
record_format openpolar
spelling ftdoajarticles:oai:doaj.org/article:eb925850bf6444efbbccfe2aec98dbf8 2024-09-15T18:02:18+00:00 Estimating Permafrost Distribution Using Co‐Located Temperature and Electrical Resistivity Measurements S. Uhlemann I. Shirley S. Wielandt C. Ulrich C. Wang S. Fiolleau J. Peterson J. Lamb E. Thaler J. Rowland S. S. Hubbard B. Dafflon 2023-09-01T00:00:00Z https://doi.org/10.1029/2023GL103987 https://doaj.org/article/eb925850bf6444efbbccfe2aec98dbf8 EN eng Wiley https://doi.org/10.1029/2023GL103987 https://doaj.org/toc/0094-8276 https://doaj.org/toc/1944-8007 1944-8007 0094-8276 doi:10.1029/2023GL103987 https://doaj.org/article/eb925850bf6444efbbccfe2aec98dbf8 Geophysical Research Letters, Vol 50, Iss 17, Pp n/a-n/a (2023) Geophysics. Cosmic physics QC801-809 article 2023 ftdoajarticles https://doi.org/10.1029/2023GL103987 2024-08-05T17:49:23Z Abstract Assessing the lateral and vertical extent of permafrost is critical to understanding the fate of Arctic ecosystems under climate change. Yet, direct measurements of permafrost distribution and temperature are often limited to a small number of borehole locations. Here, we assess the use of co‐located shallow temperature and electrical resistivity tomography (ERT) measurements to estimate at high‐resolution the distribution of permafrost in three watersheds underlain by discontinuous permafrost. Synthetic modeling shows that co‐located temperature and ERT measurements allow for supervised classification schemes that provide 60% higher accuracy compared to unsupervised methods. Linking resistivity and size of the identified permafrost bodies to surface observations, we show that tall vegetation (>0.5 m) and gentle slopes (<15°) are related to warmer and smaller permafrost bodies, and a more frequent occurrence of taliks. Article in Journal/Newspaper Climate change permafrost Directory of Open Access Journals: DOAJ Articles Geophysical Research Letters 50 17
institution Open Polar
collection Directory of Open Access Journals: DOAJ Articles
op_collection_id ftdoajarticles
language English
topic Geophysics. Cosmic physics
QC801-809
spellingShingle Geophysics. Cosmic physics
QC801-809
S. Uhlemann
I. Shirley
S. Wielandt
C. Ulrich
C. Wang
S. Fiolleau
J. Peterson
J. Lamb
E. Thaler
J. Rowland
S. S. Hubbard
B. Dafflon
Estimating Permafrost Distribution Using Co‐Located Temperature and Electrical Resistivity Measurements
topic_facet Geophysics. Cosmic physics
QC801-809
description Abstract Assessing the lateral and vertical extent of permafrost is critical to understanding the fate of Arctic ecosystems under climate change. Yet, direct measurements of permafrost distribution and temperature are often limited to a small number of borehole locations. Here, we assess the use of co‐located shallow temperature and electrical resistivity tomography (ERT) measurements to estimate at high‐resolution the distribution of permafrost in three watersheds underlain by discontinuous permafrost. Synthetic modeling shows that co‐located temperature and ERT measurements allow for supervised classification schemes that provide 60% higher accuracy compared to unsupervised methods. Linking resistivity and size of the identified permafrost bodies to surface observations, we show that tall vegetation (>0.5 m) and gentle slopes (<15°) are related to warmer and smaller permafrost bodies, and a more frequent occurrence of taliks.
format Article in Journal/Newspaper
author S. Uhlemann
I. Shirley
S. Wielandt
C. Ulrich
C. Wang
S. Fiolleau
J. Peterson
J. Lamb
E. Thaler
J. Rowland
S. S. Hubbard
B. Dafflon
author_facet S. Uhlemann
I. Shirley
S. Wielandt
C. Ulrich
C. Wang
S. Fiolleau
J. Peterson
J. Lamb
E. Thaler
J. Rowland
S. S. Hubbard
B. Dafflon
author_sort S. Uhlemann
title Estimating Permafrost Distribution Using Co‐Located Temperature and Electrical Resistivity Measurements
title_short Estimating Permafrost Distribution Using Co‐Located Temperature and Electrical Resistivity Measurements
title_full Estimating Permafrost Distribution Using Co‐Located Temperature and Electrical Resistivity Measurements
title_fullStr Estimating Permafrost Distribution Using Co‐Located Temperature and Electrical Resistivity Measurements
title_full_unstemmed Estimating Permafrost Distribution Using Co‐Located Temperature and Electrical Resistivity Measurements
title_sort estimating permafrost distribution using co‐located temperature and electrical resistivity measurements
publisher Wiley
publishDate 2023
url https://doi.org/10.1029/2023GL103987
https://doaj.org/article/eb925850bf6444efbbccfe2aec98dbf8
genre Climate change
permafrost
genre_facet Climate change
permafrost
op_source Geophysical Research Letters, Vol 50, Iss 17, Pp n/a-n/a (2023)
op_relation https://doi.org/10.1029/2023GL103987
https://doaj.org/toc/0094-8276
https://doaj.org/toc/1944-8007
1944-8007
0094-8276
doi:10.1029/2023GL103987
https://doaj.org/article/eb925850bf6444efbbccfe2aec98dbf8
op_doi https://doi.org/10.1029/2023GL103987
container_title Geophysical Research Letters
container_volume 50
container_issue 17
_version_ 1810439765855567872