Torpor on demand: heterothermy in the non-lemur primate Galago moholi.

Hibernation and daily torpor are energy- and water-saving adaptations employed to survive unfavourable periods mostly in temperate and arctic environments, but also in tropical and arid climates. Heterothermy has been found in a number of mammalian orders, but within the primates so far it seems to...

Full description

Bibliographic Details
Published in:PLoS ONE
Main Authors: Julia Nowack, Nomakwezi Mzilikazi, Kathrin H Dausmann
Format: Article in Journal/Newspaper
Language:English
Published: Public Library of Science (PLoS) 2010
Subjects:
R
Q
Online Access:https://doi.org/10.1371/journal.pone.0010797
https://doaj.org/article/e7f891c0312d4ffc848520ad65992a3a
Description
Summary:Hibernation and daily torpor are energy- and water-saving adaptations employed to survive unfavourable periods mostly in temperate and arctic environments, but also in tropical and arid climates. Heterothermy has been found in a number of mammalian orders, but within the primates so far it seems to be restricted to one family of Malagasy lemurs. As currently there is no evidence of heterothermy of a primate outside of Madagascar, the aim of our study was to investigate whether small primates from mainland Africa are indeed always homeothermic despite pronounced seasonal changes in weather and food availability.One of the nearest relatives of Malagasy lemurs, the African lesser bushbaby, Galago moholi, which inhabits a highly seasonal habitat with a hot wet-season and a cold dry-season with lower food abundance, was investigated to determine whether it is capable of heterothermy. We measured skin temperature of free-ranging individuals throughout the cool dry season using temperature-sensitive collars as well as metabolic rate in captured individuals. Torpor was employed by 15% of 20 animals. Only one of these animals displayed heterothermy in response to natural availability of food and water, whereas the other animals became torpid without access to food and water.Our results show that G. moholi are physiologically capable of employing torpor. However they do not use it as a routine behaviour, but only under adverse conditions. This reluctance is presumably a result of conflicting selective pressures for energy savings versus other ecological and evolutionary forces, such as reproduction or territory defence. Our results support the view that heterothermy in primates evolved before the division of African and Malagasy Strepsirhini, with the possible implication that more primate species than previously thought might still have the potential to call upon this possibility, if the situation necessitates it.