On the role of circulation and mixing in the ventilation of oxygen minimum zones with a focus on the eastern tropical North Atlantic

Ocean observations are analysed in the framework of Collaborative Research Center 754 (SFB 754) "Climate-Biogeochemistry Interactions in the Tropical Ocean" to study (1) the structure of tropical oxygen minimum zones (OMZs), (2) the processes that contribute to the oxygen budget, and (3) l...

Full description

Bibliographic Details
Published in:Biogeosciences
Main Authors: P. Brandt, H. W. Bange, D. Banyte, M. Dengler, S.-H. Didwischus, T. Fischer, R. J. Greatbatch, J. Hahn, T. Kanzow, J. Karstensen, A. Körtzinger, G. Krahmann, S. Schmidtko, L. Stramma, T. Tanhua, M. Visbeck
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2015
Subjects:
Online Access:https://doi.org/10.5194/bg-12-489-2015
https://doaj.org/article/e6a7e08ecbfd4aecaa9e73466ea9fae9
id ftdoajarticles:oai:doaj.org/article:e6a7e08ecbfd4aecaa9e73466ea9fae9
record_format openpolar
spelling ftdoajarticles:oai:doaj.org/article:e6a7e08ecbfd4aecaa9e73466ea9fae9 2023-05-15T17:32:37+02:00 On the role of circulation and mixing in the ventilation of oxygen minimum zones with a focus on the eastern tropical North Atlantic P. Brandt H. W. Bange D. Banyte M. Dengler S.-H. Didwischus T. Fischer R. J. Greatbatch J. Hahn T. Kanzow J. Karstensen A. Körtzinger G. Krahmann S. Schmidtko L. Stramma T. Tanhua M. Visbeck 2015-01-01T00:00:00Z https://doi.org/10.5194/bg-12-489-2015 https://doaj.org/article/e6a7e08ecbfd4aecaa9e73466ea9fae9 EN eng Copernicus Publications http://www.biogeosciences.net/12/489/2015/bg-12-489-2015.pdf https://doaj.org/toc/1726-4170 https://doaj.org/toc/1726-4189 1726-4170 1726-4189 doi:10.5194/bg-12-489-2015 https://doaj.org/article/e6a7e08ecbfd4aecaa9e73466ea9fae9 Biogeosciences, Vol 12, Iss 2, Pp 489-512 (2015) Ecology QH540-549.5 Life QH501-531 Geology QE1-996.5 article 2015 ftdoajarticles https://doi.org/10.5194/bg-12-489-2015 2022-12-31T09:02:00Z Ocean observations are analysed in the framework of Collaborative Research Center 754 (SFB 754) "Climate-Biogeochemistry Interactions in the Tropical Ocean" to study (1) the structure of tropical oxygen minimum zones (OMZs), (2) the processes that contribute to the oxygen budget, and (3) long-term changes in the oxygen distribution. The OMZ of the eastern tropical North Atlantic (ETNA), located between the well-ventilated subtropical gyre and the equatorial oxygen maximum, is composed of a deep OMZ at about 400 m in depth with its core region centred at about 20° W, 10° N and a shallow OMZ at about 100 m in depth, with the lowest oxygen concentrations in proximity to the coastal upwelling region off Mauritania and Senegal. The oxygen budget of the deep OMZ is given by oxygen consumption mainly balanced by the oxygen supply due to meridional eddy fluxes (about 60%) and vertical mixing (about 20%, locally up to 30%). Advection by zonal jets is crucial for the establishment of the equatorial oxygen maximum. In the latitude range of the deep OMZ, it dominates the oxygen supply in the upper 300 to 400 m and generates the intermediate oxygen maximum between deep and shallow OMZs. Water mass ages from transient tracers indicate substantially older water masses in the core of the deep OMZ (about 120–180 years) compared to regions north and south of it. The deoxygenation of the ETNA OMZ during recent decades suggests a substantial imbalance in the oxygen budget: about 10% of the oxygen consumption during that period was not balanced by ventilation. Long-term oxygen observations show variability on interannual, decadal and multidecadal timescales that can partly be attributed to circulation changes. In comparison to the ETNA OMZ, the eastern tropical South Pacific OMZ shows a similar structure, including an equatorial oxygen maximum driven by zonal advection but overall much lower oxygen concentrations approaching zero in extended regions. As the shape of the OMZs is set by ocean circulation, the widespread ... Article in Journal/Newspaper North Atlantic Directory of Open Access Journals: DOAJ Articles Pacific Biogeosciences 12 2 489 512
institution Open Polar
collection Directory of Open Access Journals: DOAJ Articles
op_collection_id ftdoajarticles
language English
topic Ecology
QH540-549.5
Life
QH501-531
Geology
QE1-996.5
spellingShingle Ecology
QH540-549.5
Life
QH501-531
Geology
QE1-996.5
P. Brandt
H. W. Bange
D. Banyte
M. Dengler
S.-H. Didwischus
T. Fischer
R. J. Greatbatch
J. Hahn
T. Kanzow
J. Karstensen
A. Körtzinger
G. Krahmann
S. Schmidtko
L. Stramma
T. Tanhua
M. Visbeck
On the role of circulation and mixing in the ventilation of oxygen minimum zones with a focus on the eastern tropical North Atlantic
topic_facet Ecology
QH540-549.5
Life
QH501-531
Geology
QE1-996.5
description Ocean observations are analysed in the framework of Collaborative Research Center 754 (SFB 754) "Climate-Biogeochemistry Interactions in the Tropical Ocean" to study (1) the structure of tropical oxygen minimum zones (OMZs), (2) the processes that contribute to the oxygen budget, and (3) long-term changes in the oxygen distribution. The OMZ of the eastern tropical North Atlantic (ETNA), located between the well-ventilated subtropical gyre and the equatorial oxygen maximum, is composed of a deep OMZ at about 400 m in depth with its core region centred at about 20° W, 10° N and a shallow OMZ at about 100 m in depth, with the lowest oxygen concentrations in proximity to the coastal upwelling region off Mauritania and Senegal. The oxygen budget of the deep OMZ is given by oxygen consumption mainly balanced by the oxygen supply due to meridional eddy fluxes (about 60%) and vertical mixing (about 20%, locally up to 30%). Advection by zonal jets is crucial for the establishment of the equatorial oxygen maximum. In the latitude range of the deep OMZ, it dominates the oxygen supply in the upper 300 to 400 m and generates the intermediate oxygen maximum between deep and shallow OMZs. Water mass ages from transient tracers indicate substantially older water masses in the core of the deep OMZ (about 120–180 years) compared to regions north and south of it. The deoxygenation of the ETNA OMZ during recent decades suggests a substantial imbalance in the oxygen budget: about 10% of the oxygen consumption during that period was not balanced by ventilation. Long-term oxygen observations show variability on interannual, decadal and multidecadal timescales that can partly be attributed to circulation changes. In comparison to the ETNA OMZ, the eastern tropical South Pacific OMZ shows a similar structure, including an equatorial oxygen maximum driven by zonal advection but overall much lower oxygen concentrations approaching zero in extended regions. As the shape of the OMZs is set by ocean circulation, the widespread ...
format Article in Journal/Newspaper
author P. Brandt
H. W. Bange
D. Banyte
M. Dengler
S.-H. Didwischus
T. Fischer
R. J. Greatbatch
J. Hahn
T. Kanzow
J. Karstensen
A. Körtzinger
G. Krahmann
S. Schmidtko
L. Stramma
T. Tanhua
M. Visbeck
author_facet P. Brandt
H. W. Bange
D. Banyte
M. Dengler
S.-H. Didwischus
T. Fischer
R. J. Greatbatch
J. Hahn
T. Kanzow
J. Karstensen
A. Körtzinger
G. Krahmann
S. Schmidtko
L. Stramma
T. Tanhua
M. Visbeck
author_sort P. Brandt
title On the role of circulation and mixing in the ventilation of oxygen minimum zones with a focus on the eastern tropical North Atlantic
title_short On the role of circulation and mixing in the ventilation of oxygen minimum zones with a focus on the eastern tropical North Atlantic
title_full On the role of circulation and mixing in the ventilation of oxygen minimum zones with a focus on the eastern tropical North Atlantic
title_fullStr On the role of circulation and mixing in the ventilation of oxygen minimum zones with a focus on the eastern tropical North Atlantic
title_full_unstemmed On the role of circulation and mixing in the ventilation of oxygen minimum zones with a focus on the eastern tropical North Atlantic
title_sort on the role of circulation and mixing in the ventilation of oxygen minimum zones with a focus on the eastern tropical north atlantic
publisher Copernicus Publications
publishDate 2015
url https://doi.org/10.5194/bg-12-489-2015
https://doaj.org/article/e6a7e08ecbfd4aecaa9e73466ea9fae9
geographic Pacific
geographic_facet Pacific
genre North Atlantic
genre_facet North Atlantic
op_source Biogeosciences, Vol 12, Iss 2, Pp 489-512 (2015)
op_relation http://www.biogeosciences.net/12/489/2015/bg-12-489-2015.pdf
https://doaj.org/toc/1726-4170
https://doaj.org/toc/1726-4189
1726-4170
1726-4189
doi:10.5194/bg-12-489-2015
https://doaj.org/article/e6a7e08ecbfd4aecaa9e73466ea9fae9
op_doi https://doi.org/10.5194/bg-12-489-2015
container_title Biogeosciences
container_volume 12
container_issue 2
container_start_page 489
op_container_end_page 512
_version_ 1766130826608640000