Projecting Antarctica's contribution to future sea level rise from basal ice shelf melt using linear response functions of 16 ice sheet models (LARMIP-2)

The sea level contribution of the Antarctic ice sheet constitutes a large uncertainty in future sea level projections. Here we apply a linear response theory approach to 16 state-of-the-art ice sheet models to estimate the Antarctic ice sheet contribution from basal ice shelf melting within the 21st...

Full description

Bibliographic Details
Published in:Earth System Dynamics
Main Authors: A. Levermann, R. Winkelmann, T. Albrecht, H. Goelzer, N. R. Golledge, R. Greve, P. Huybrechts, J. Jordan, G. Leguy, D. Martin, M. Morlighem, F. Pattyn, D. Pollard, A. Quiquet, C. Rodehacke, H. Seroussi, J. Sutter, T. Zhang, J. Van Breedam, R. Calov, R. DeConto, C. Dumas, J. Garbe, G. H. Gudmundsson, M. J. Hoffman, A. Humbert, T. Kleiner, W. H. Lipscomb, M. Meinshausen, E. Ng, S. M. J. Nowicki, M. Perego, S. F. Price, F. Saito, N.-J. Schlegel, S. Sun, R. S. W. van de Wal
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2020
Subjects:
Q
Online Access:https://doi.org/10.5194/esd-11-35-2020
https://doaj.org/article/e6a747b9aaaf40f680e90273a5d96cc4
id ftdoajarticles:oai:doaj.org/article:e6a747b9aaaf40f680e90273a5d96cc4
record_format openpolar
spelling ftdoajarticles:oai:doaj.org/article:e6a747b9aaaf40f680e90273a5d96cc4 2023-05-15T13:38:50+02:00 Projecting Antarctica's contribution to future sea level rise from basal ice shelf melt using linear response functions of 16 ice sheet models (LARMIP-2) A. Levermann R. Winkelmann T. Albrecht H. Goelzer N. R. Golledge R. Greve P. Huybrechts J. Jordan G. Leguy D. Martin M. Morlighem F. Pattyn D. Pollard A. Quiquet C. Rodehacke H. Seroussi J. Sutter T. Zhang J. Van Breedam R. Calov R. DeConto C. Dumas J. Garbe G. H. Gudmundsson M. J. Hoffman A. Humbert T. Kleiner W. H. Lipscomb M. Meinshausen E. Ng S. M. J. Nowicki M. Perego S. F. Price F. Saito N.-J. Schlegel S. Sun R. S. W. van de Wal 2020-02-01T00:00:00Z https://doi.org/10.5194/esd-11-35-2020 https://doaj.org/article/e6a747b9aaaf40f680e90273a5d96cc4 EN eng Copernicus Publications https://www.earth-syst-dynam.net/11/35/2020/esd-11-35-2020.pdf https://doaj.org/toc/2190-4979 https://doaj.org/toc/2190-4987 doi:10.5194/esd-11-35-2020 2190-4979 2190-4987 https://doaj.org/article/e6a747b9aaaf40f680e90273a5d96cc4 Earth System Dynamics, Vol 11, Pp 35-76 (2020) Science Q Geology QE1-996.5 Dynamic and structural geology QE500-639.5 article 2020 ftdoajarticles https://doi.org/10.5194/esd-11-35-2020 2022-12-31T13:55:11Z The sea level contribution of the Antarctic ice sheet constitutes a large uncertainty in future sea level projections. Here we apply a linear response theory approach to 16 state-of-the-art ice sheet models to estimate the Antarctic ice sheet contribution from basal ice shelf melting within the 21st century. The purpose of this computation is to estimate the uncertainty of Antarctica's future contribution to global sea level rise that arises from large uncertainty in the oceanic forcing and the associated ice shelf melting. Ice shelf melting is considered to be a major if not the largest perturbation of the ice sheet's flow into the ocean. However, by computing only the sea level contribution in response to ice shelf melting, our study is neglecting a number of processes such as surface-mass-balance-related contributions. In assuming linear response theory, we are able to capture complex temporal responses of the ice sheets, but we neglect any self-dampening or self-amplifying processes. This is particularly relevant in situations in which an instability is dominating the ice loss. The results obtained here are thus relevant, in particular wherever the ice loss is dominated by the forcing as opposed to an internal instability, for example in strong ocean warming scenarios. In order to allow for comparison the methodology was chosen to be exactly the same as in an earlier study (Levermann et al., 2014) but with 16 instead of 5 ice sheet models. We include uncertainty in the atmospheric warming response to carbon emissions (full range of CMIP5 climate model sensitivities), uncertainty in the oceanic transport to the Southern Ocean (obtained from the time-delayed and scaled oceanic subsurface warming in CMIP5 models in relation to the global mean surface warming), and the observed range of responses of basal ice shelf melting to oceanic warming outside the ice shelf cavity. This uncertainty in basal ice shelf melting is then convoluted with the linear response functions of each of the 16 ice sheet models to obtain ... Article in Journal/Newspaper Antarc* Antarctic Ice Sheet Ice Shelf Southern Ocean Directory of Open Access Journals: DOAJ Articles Antarctic Southern Ocean The Antarctic Earth System Dynamics 11 1 35 76
institution Open Polar
collection Directory of Open Access Journals: DOAJ Articles
op_collection_id ftdoajarticles
language English
topic Science
Q
Geology
QE1-996.5
Dynamic and structural geology
QE500-639.5
spellingShingle Science
Q
Geology
QE1-996.5
Dynamic and structural geology
QE500-639.5
A. Levermann
R. Winkelmann
T. Albrecht
H. Goelzer
N. R. Golledge
R. Greve
P. Huybrechts
J. Jordan
G. Leguy
D. Martin
M. Morlighem
F. Pattyn
D. Pollard
A. Quiquet
C. Rodehacke
H. Seroussi
J. Sutter
T. Zhang
J. Van Breedam
R. Calov
R. DeConto
C. Dumas
J. Garbe
G. H. Gudmundsson
M. J. Hoffman
A. Humbert
T. Kleiner
W. H. Lipscomb
M. Meinshausen
E. Ng
S. M. J. Nowicki
M. Perego
S. F. Price
F. Saito
N.-J. Schlegel
S. Sun
R. S. W. van de Wal
Projecting Antarctica's contribution to future sea level rise from basal ice shelf melt using linear response functions of 16 ice sheet models (LARMIP-2)
topic_facet Science
Q
Geology
QE1-996.5
Dynamic and structural geology
QE500-639.5
description The sea level contribution of the Antarctic ice sheet constitutes a large uncertainty in future sea level projections. Here we apply a linear response theory approach to 16 state-of-the-art ice sheet models to estimate the Antarctic ice sheet contribution from basal ice shelf melting within the 21st century. The purpose of this computation is to estimate the uncertainty of Antarctica's future contribution to global sea level rise that arises from large uncertainty in the oceanic forcing and the associated ice shelf melting. Ice shelf melting is considered to be a major if not the largest perturbation of the ice sheet's flow into the ocean. However, by computing only the sea level contribution in response to ice shelf melting, our study is neglecting a number of processes such as surface-mass-balance-related contributions. In assuming linear response theory, we are able to capture complex temporal responses of the ice sheets, but we neglect any self-dampening or self-amplifying processes. This is particularly relevant in situations in which an instability is dominating the ice loss. The results obtained here are thus relevant, in particular wherever the ice loss is dominated by the forcing as opposed to an internal instability, for example in strong ocean warming scenarios. In order to allow for comparison the methodology was chosen to be exactly the same as in an earlier study (Levermann et al., 2014) but with 16 instead of 5 ice sheet models. We include uncertainty in the atmospheric warming response to carbon emissions (full range of CMIP5 climate model sensitivities), uncertainty in the oceanic transport to the Southern Ocean (obtained from the time-delayed and scaled oceanic subsurface warming in CMIP5 models in relation to the global mean surface warming), and the observed range of responses of basal ice shelf melting to oceanic warming outside the ice shelf cavity. This uncertainty in basal ice shelf melting is then convoluted with the linear response functions of each of the 16 ice sheet models to obtain ...
format Article in Journal/Newspaper
author A. Levermann
R. Winkelmann
T. Albrecht
H. Goelzer
N. R. Golledge
R. Greve
P. Huybrechts
J. Jordan
G. Leguy
D. Martin
M. Morlighem
F. Pattyn
D. Pollard
A. Quiquet
C. Rodehacke
H. Seroussi
J. Sutter
T. Zhang
J. Van Breedam
R. Calov
R. DeConto
C. Dumas
J. Garbe
G. H. Gudmundsson
M. J. Hoffman
A. Humbert
T. Kleiner
W. H. Lipscomb
M. Meinshausen
E. Ng
S. M. J. Nowicki
M. Perego
S. F. Price
F. Saito
N.-J. Schlegel
S. Sun
R. S. W. van de Wal
author_facet A. Levermann
R. Winkelmann
T. Albrecht
H. Goelzer
N. R. Golledge
R. Greve
P. Huybrechts
J. Jordan
G. Leguy
D. Martin
M. Morlighem
F. Pattyn
D. Pollard
A. Quiquet
C. Rodehacke
H. Seroussi
J. Sutter
T. Zhang
J. Van Breedam
R. Calov
R. DeConto
C. Dumas
J. Garbe
G. H. Gudmundsson
M. J. Hoffman
A. Humbert
T. Kleiner
W. H. Lipscomb
M. Meinshausen
E. Ng
S. M. J. Nowicki
M. Perego
S. F. Price
F. Saito
N.-J. Schlegel
S. Sun
R. S. W. van de Wal
author_sort A. Levermann
title Projecting Antarctica's contribution to future sea level rise from basal ice shelf melt using linear response functions of 16 ice sheet models (LARMIP-2)
title_short Projecting Antarctica's contribution to future sea level rise from basal ice shelf melt using linear response functions of 16 ice sheet models (LARMIP-2)
title_full Projecting Antarctica's contribution to future sea level rise from basal ice shelf melt using linear response functions of 16 ice sheet models (LARMIP-2)
title_fullStr Projecting Antarctica's contribution to future sea level rise from basal ice shelf melt using linear response functions of 16 ice sheet models (LARMIP-2)
title_full_unstemmed Projecting Antarctica's contribution to future sea level rise from basal ice shelf melt using linear response functions of 16 ice sheet models (LARMIP-2)
title_sort projecting antarctica's contribution to future sea level rise from basal ice shelf melt using linear response functions of 16 ice sheet models (larmip-2)
publisher Copernicus Publications
publishDate 2020
url https://doi.org/10.5194/esd-11-35-2020
https://doaj.org/article/e6a747b9aaaf40f680e90273a5d96cc4
geographic Antarctic
Southern Ocean
The Antarctic
geographic_facet Antarctic
Southern Ocean
The Antarctic
genre Antarc*
Antarctic
Ice Sheet
Ice Shelf
Southern Ocean
genre_facet Antarc*
Antarctic
Ice Sheet
Ice Shelf
Southern Ocean
op_source Earth System Dynamics, Vol 11, Pp 35-76 (2020)
op_relation https://www.earth-syst-dynam.net/11/35/2020/esd-11-35-2020.pdf
https://doaj.org/toc/2190-4979
https://doaj.org/toc/2190-4987
doi:10.5194/esd-11-35-2020
2190-4979
2190-4987
https://doaj.org/article/e6a747b9aaaf40f680e90273a5d96cc4
op_doi https://doi.org/10.5194/esd-11-35-2020
container_title Earth System Dynamics
container_volume 11
container_issue 1
container_start_page 35
op_container_end_page 76
_version_ 1766111566465335296