Bayesian aerosol retrieval algorithm for MODIS AOD retrieval over land

We have developed a Bayesian aerosol retrieval (BAR) algorithm for the retrieval of aerosol optical depth (AOD) over land from the Moderate Resolution Imaging Spectroradiometer (MODIS). In the BAR algorithm, we simultaneously retrieve all dark land pixels in a granule, utilize spatial correlation mo...

Full description

Bibliographic Details
Published in:Atmospheric Measurement Techniques
Main Authors: A. Lipponen, T. Mielonen, M. R. A. Pitkänen, R. C. Levy, V. R. Sawyer, S. Romakkaniemi, V. Kolehmainen, A. Arola
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2018
Subjects:
Online Access:https://doi.org/10.5194/amt-11-1529-2018
https://doaj.org/article/e5b0a32515ca4c4a9ef247d8105f9c65
_version_ 1821552782973337600
author A. Lipponen
T. Mielonen
M. R. A. Pitkänen
R. C. Levy
V. R. Sawyer
S. Romakkaniemi
V. Kolehmainen
A. Arola
author_facet A. Lipponen
T. Mielonen
M. R. A. Pitkänen
R. C. Levy
V. R. Sawyer
S. Romakkaniemi
V. Kolehmainen
A. Arola
author_sort A. Lipponen
collection Directory of Open Access Journals: DOAJ Articles
container_issue 3
container_start_page 1529
container_title Atmospheric Measurement Techniques
container_volume 11
description We have developed a Bayesian aerosol retrieval (BAR) algorithm for the retrieval of aerosol optical depth (AOD) over land from the Moderate Resolution Imaging Spectroradiometer (MODIS). In the BAR algorithm, we simultaneously retrieve all dark land pixels in a granule, utilize spatial correlation models for the unknown aerosol parameters, use a statistical prior model for the surface reflectance, and take into account the uncertainties due to fixed aerosol models. The retrieved parameters are total AOD at 0.55 µm, fine-mode fraction (FMF), and surface reflectances at four different wavelengths (0.47, 0.55, 0.64, and 2.1 µm). The accuracy of the new algorithm is evaluated by comparing the AOD retrievals to Aerosol Robotic Network (AERONET) AOD. The results show that the BAR significantly improves the accuracy of AOD retrievals over the operational Dark Target (DT) algorithm. A reduction of about 29 % in the AOD root mean square error and decrease of about 80 % in the median bias of AOD were found globally when the BAR was used instead of the DT algorithm. Furthermore, the fraction of AOD retrievals inside the ±(0.05+15 %) expected error envelope increased from 55 to 76 %. In addition to retrieving the values of AOD, FMF, and surface reflectance, the BAR also gives pixel-level posterior uncertainty estimates for the retrieved parameters. The BAR algorithm always results in physical, non-negative AOD values, and the average computation time for a single granule was less than a minute on a modern personal computer.
format Article in Journal/Newspaper
genre Aerosol Robotic Network
genre_facet Aerosol Robotic Network
id ftdoajarticles:oai:doaj.org/article:e5b0a32515ca4c4a9ef247d8105f9c65
institution Open Polar
language English
op_collection_id ftdoajarticles
op_container_end_page 1547
op_doi https://doi.org/10.5194/amt-11-1529-2018
op_relation https://www.atmos-meas-tech.net/11/1529/2018/amt-11-1529-2018.pdf
https://doaj.org/toc/1867-1381
https://doaj.org/toc/1867-8548
doi:10.5194/amt-11-1529-2018
1867-1381
1867-8548
https://doaj.org/article/e5b0a32515ca4c4a9ef247d8105f9c65
op_source Atmospheric Measurement Techniques, Vol 11, Pp 1529-1547 (2018)
publishDate 2018
publisher Copernicus Publications
record_format openpolar
spelling ftdoajarticles:oai:doaj.org/article:e5b0a32515ca4c4a9ef247d8105f9c65 2025-01-16T18:38:24+00:00 Bayesian aerosol retrieval algorithm for MODIS AOD retrieval over land A. Lipponen T. Mielonen M. R. A. Pitkänen R. C. Levy V. R. Sawyer S. Romakkaniemi V. Kolehmainen A. Arola 2018-03-01T00:00:00Z https://doi.org/10.5194/amt-11-1529-2018 https://doaj.org/article/e5b0a32515ca4c4a9ef247d8105f9c65 EN eng Copernicus Publications https://www.atmos-meas-tech.net/11/1529/2018/amt-11-1529-2018.pdf https://doaj.org/toc/1867-1381 https://doaj.org/toc/1867-8548 doi:10.5194/amt-11-1529-2018 1867-1381 1867-8548 https://doaj.org/article/e5b0a32515ca4c4a9ef247d8105f9c65 Atmospheric Measurement Techniques, Vol 11, Pp 1529-1547 (2018) Environmental engineering TA170-171 Earthwork. Foundations TA715-787 article 2018 ftdoajarticles https://doi.org/10.5194/amt-11-1529-2018 2022-12-31T08:13:09Z We have developed a Bayesian aerosol retrieval (BAR) algorithm for the retrieval of aerosol optical depth (AOD) over land from the Moderate Resolution Imaging Spectroradiometer (MODIS). In the BAR algorithm, we simultaneously retrieve all dark land pixels in a granule, utilize spatial correlation models for the unknown aerosol parameters, use a statistical prior model for the surface reflectance, and take into account the uncertainties due to fixed aerosol models. The retrieved parameters are total AOD at 0.55 µm, fine-mode fraction (FMF), and surface reflectances at four different wavelengths (0.47, 0.55, 0.64, and 2.1 µm). The accuracy of the new algorithm is evaluated by comparing the AOD retrievals to Aerosol Robotic Network (AERONET) AOD. The results show that the BAR significantly improves the accuracy of AOD retrievals over the operational Dark Target (DT) algorithm. A reduction of about 29 % in the AOD root mean square error and decrease of about 80 % in the median bias of AOD were found globally when the BAR was used instead of the DT algorithm. Furthermore, the fraction of AOD retrievals inside the ±(0.05+15 %) expected error envelope increased from 55 to 76 %. In addition to retrieving the values of AOD, FMF, and surface reflectance, the BAR also gives pixel-level posterior uncertainty estimates for the retrieved parameters. The BAR algorithm always results in physical, non-negative AOD values, and the average computation time for a single granule was less than a minute on a modern personal computer. Article in Journal/Newspaper Aerosol Robotic Network Directory of Open Access Journals: DOAJ Articles Atmospheric Measurement Techniques 11 3 1529 1547
spellingShingle Environmental engineering
TA170-171
Earthwork. Foundations
TA715-787
A. Lipponen
T. Mielonen
M. R. A. Pitkänen
R. C. Levy
V. R. Sawyer
S. Romakkaniemi
V. Kolehmainen
A. Arola
Bayesian aerosol retrieval algorithm for MODIS AOD retrieval over land
title Bayesian aerosol retrieval algorithm for MODIS AOD retrieval over land
title_full Bayesian aerosol retrieval algorithm for MODIS AOD retrieval over land
title_fullStr Bayesian aerosol retrieval algorithm for MODIS AOD retrieval over land
title_full_unstemmed Bayesian aerosol retrieval algorithm for MODIS AOD retrieval over land
title_short Bayesian aerosol retrieval algorithm for MODIS AOD retrieval over land
title_sort bayesian aerosol retrieval algorithm for modis aod retrieval over land
topic Environmental engineering
TA170-171
Earthwork. Foundations
TA715-787
topic_facet Environmental engineering
TA170-171
Earthwork. Foundations
TA715-787
url https://doi.org/10.5194/amt-11-1529-2018
https://doaj.org/article/e5b0a32515ca4c4a9ef247d8105f9c65