Bayesian aerosol retrieval algorithm for MODIS AOD retrieval over land
We have developed a Bayesian aerosol retrieval (BAR) algorithm for the retrieval of aerosol optical depth (AOD) over land from the Moderate Resolution Imaging Spectroradiometer (MODIS). In the BAR algorithm, we simultaneously retrieve all dark land pixels in a granule, utilize spatial correlation mo...
Published in: | Atmospheric Measurement Techniques |
---|---|
Main Authors: | , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Copernicus Publications
2018
|
Subjects: | |
Online Access: | https://doi.org/10.5194/amt-11-1529-2018 https://doaj.org/article/e5b0a32515ca4c4a9ef247d8105f9c65 |
_version_ | 1821552782973337600 |
---|---|
author | A. Lipponen T. Mielonen M. R. A. Pitkänen R. C. Levy V. R. Sawyer S. Romakkaniemi V. Kolehmainen A. Arola |
author_facet | A. Lipponen T. Mielonen M. R. A. Pitkänen R. C. Levy V. R. Sawyer S. Romakkaniemi V. Kolehmainen A. Arola |
author_sort | A. Lipponen |
collection | Directory of Open Access Journals: DOAJ Articles |
container_issue | 3 |
container_start_page | 1529 |
container_title | Atmospheric Measurement Techniques |
container_volume | 11 |
description | We have developed a Bayesian aerosol retrieval (BAR) algorithm for the retrieval of aerosol optical depth (AOD) over land from the Moderate Resolution Imaging Spectroradiometer (MODIS). In the BAR algorithm, we simultaneously retrieve all dark land pixels in a granule, utilize spatial correlation models for the unknown aerosol parameters, use a statistical prior model for the surface reflectance, and take into account the uncertainties due to fixed aerosol models. The retrieved parameters are total AOD at 0.55 µm, fine-mode fraction (FMF), and surface reflectances at four different wavelengths (0.47, 0.55, 0.64, and 2.1 µm). The accuracy of the new algorithm is evaluated by comparing the AOD retrievals to Aerosol Robotic Network (AERONET) AOD. The results show that the BAR significantly improves the accuracy of AOD retrievals over the operational Dark Target (DT) algorithm. A reduction of about 29 % in the AOD root mean square error and decrease of about 80 % in the median bias of AOD were found globally when the BAR was used instead of the DT algorithm. Furthermore, the fraction of AOD retrievals inside the ±(0.05+15 %) expected error envelope increased from 55 to 76 %. In addition to retrieving the values of AOD, FMF, and surface reflectance, the BAR also gives pixel-level posterior uncertainty estimates for the retrieved parameters. The BAR algorithm always results in physical, non-negative AOD values, and the average computation time for a single granule was less than a minute on a modern personal computer. |
format | Article in Journal/Newspaper |
genre | Aerosol Robotic Network |
genre_facet | Aerosol Robotic Network |
id | ftdoajarticles:oai:doaj.org/article:e5b0a32515ca4c4a9ef247d8105f9c65 |
institution | Open Polar |
language | English |
op_collection_id | ftdoajarticles |
op_container_end_page | 1547 |
op_doi | https://doi.org/10.5194/amt-11-1529-2018 |
op_relation | https://www.atmos-meas-tech.net/11/1529/2018/amt-11-1529-2018.pdf https://doaj.org/toc/1867-1381 https://doaj.org/toc/1867-8548 doi:10.5194/amt-11-1529-2018 1867-1381 1867-8548 https://doaj.org/article/e5b0a32515ca4c4a9ef247d8105f9c65 |
op_source | Atmospheric Measurement Techniques, Vol 11, Pp 1529-1547 (2018) |
publishDate | 2018 |
publisher | Copernicus Publications |
record_format | openpolar |
spelling | ftdoajarticles:oai:doaj.org/article:e5b0a32515ca4c4a9ef247d8105f9c65 2025-01-16T18:38:24+00:00 Bayesian aerosol retrieval algorithm for MODIS AOD retrieval over land A. Lipponen T. Mielonen M. R. A. Pitkänen R. C. Levy V. R. Sawyer S. Romakkaniemi V. Kolehmainen A. Arola 2018-03-01T00:00:00Z https://doi.org/10.5194/amt-11-1529-2018 https://doaj.org/article/e5b0a32515ca4c4a9ef247d8105f9c65 EN eng Copernicus Publications https://www.atmos-meas-tech.net/11/1529/2018/amt-11-1529-2018.pdf https://doaj.org/toc/1867-1381 https://doaj.org/toc/1867-8548 doi:10.5194/amt-11-1529-2018 1867-1381 1867-8548 https://doaj.org/article/e5b0a32515ca4c4a9ef247d8105f9c65 Atmospheric Measurement Techniques, Vol 11, Pp 1529-1547 (2018) Environmental engineering TA170-171 Earthwork. Foundations TA715-787 article 2018 ftdoajarticles https://doi.org/10.5194/amt-11-1529-2018 2022-12-31T08:13:09Z We have developed a Bayesian aerosol retrieval (BAR) algorithm for the retrieval of aerosol optical depth (AOD) over land from the Moderate Resolution Imaging Spectroradiometer (MODIS). In the BAR algorithm, we simultaneously retrieve all dark land pixels in a granule, utilize spatial correlation models for the unknown aerosol parameters, use a statistical prior model for the surface reflectance, and take into account the uncertainties due to fixed aerosol models. The retrieved parameters are total AOD at 0.55 µm, fine-mode fraction (FMF), and surface reflectances at four different wavelengths (0.47, 0.55, 0.64, and 2.1 µm). The accuracy of the new algorithm is evaluated by comparing the AOD retrievals to Aerosol Robotic Network (AERONET) AOD. The results show that the BAR significantly improves the accuracy of AOD retrievals over the operational Dark Target (DT) algorithm. A reduction of about 29 % in the AOD root mean square error and decrease of about 80 % in the median bias of AOD were found globally when the BAR was used instead of the DT algorithm. Furthermore, the fraction of AOD retrievals inside the ±(0.05+15 %) expected error envelope increased from 55 to 76 %. In addition to retrieving the values of AOD, FMF, and surface reflectance, the BAR also gives pixel-level posterior uncertainty estimates for the retrieved parameters. The BAR algorithm always results in physical, non-negative AOD values, and the average computation time for a single granule was less than a minute on a modern personal computer. Article in Journal/Newspaper Aerosol Robotic Network Directory of Open Access Journals: DOAJ Articles Atmospheric Measurement Techniques 11 3 1529 1547 |
spellingShingle | Environmental engineering TA170-171 Earthwork. Foundations TA715-787 A. Lipponen T. Mielonen M. R. A. Pitkänen R. C. Levy V. R. Sawyer S. Romakkaniemi V. Kolehmainen A. Arola Bayesian aerosol retrieval algorithm for MODIS AOD retrieval over land |
title | Bayesian aerosol retrieval algorithm for MODIS AOD retrieval over land |
title_full | Bayesian aerosol retrieval algorithm for MODIS AOD retrieval over land |
title_fullStr | Bayesian aerosol retrieval algorithm for MODIS AOD retrieval over land |
title_full_unstemmed | Bayesian aerosol retrieval algorithm for MODIS AOD retrieval over land |
title_short | Bayesian aerosol retrieval algorithm for MODIS AOD retrieval over land |
title_sort | bayesian aerosol retrieval algorithm for modis aod retrieval over land |
topic | Environmental engineering TA170-171 Earthwork. Foundations TA715-787 |
topic_facet | Environmental engineering TA170-171 Earthwork. Foundations TA715-787 |
url | https://doi.org/10.5194/amt-11-1529-2018 https://doaj.org/article/e5b0a32515ca4c4a9ef247d8105f9c65 |