Relating snowfall observations to Greenland ice sheet mass changes: an atmospheric circulation perspective

Snowfall is the major source of mass for the Greenland ice sheet (GrIS) but the spatial and temporal variability of snowfall and the connections between snowfall and mass balance have so far been inadequately quantified. By characterizing local atmospheric circulation and utilizing CloudSat spacebor...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: M. R. Gallagher, M. D. Shupe, H. Chepfer, T. L'Ecuyer
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2022
Subjects:
Online Access:https://doi.org/10.5194/tc-16-435-2022
https://doaj.org/article/e1d26e6f250b4be6af779a2d76a6557d
Description
Summary:Snowfall is the major source of mass for the Greenland ice sheet (GrIS) but the spatial and temporal variability of snowfall and the connections between snowfall and mass balance have so far been inadequately quantified. By characterizing local atmospheric circulation and utilizing CloudSat spaceborne radar observations of snowfall, we provide a detailed spatial analysis of snowfall variability and its relationship to Greenland mass balance, presenting first-of-their-kind maps of daily spatial variability in snowfall from observations across Greenland. For identified regional atmospheric circulation patterns, we show that the spatial distribution and net mass input of snowfall vary significantly with the position and strength of surface cyclones. Cyclones west of Greenland driving southerly flow contribute significantly more snowfall than any other circulation regime, with each daily occurrence of the most extreme southerly circulation pattern contributing an average of 1.66 Gt of snow to the Greenland ice sheet. While cyclones east of Greenland, patterns with the least snowfall, contribute as little as 0.58 Gt each day. Above 2 km on the ice sheet where snowfall is inconsistent, extreme southerly patterns are the most significant mass contributors, with up to 1.20 Gt of snowfall above this elevation. This analysis demonstrates that snowfall over the interior of Greenland varies by up to a factor of 5 depending on regional circulation conditions. Using independent observations of mass changes made by the Gravity Recovery and Climate Experiment (GRACE), we verify that the largest mass increases are tied to the southerly regime with cyclones west of Greenland. For occurrences of the strongest southerly pattern, GRACE indicates a net mass increase of 1.29 Gt in the ice sheet accumulation zone (above 2 km elevation) compared to the 1.20 Gt of snowfall observed by CloudSat. This overall agreement suggests that the analytical approach presented here can be used to directly quantify snowfall mass contributions and ...