Dissolved Organic Carbon Turnover in Permafrost-Influenced Watersheds of Interior Alaska: Molecular Insights and the Priming Effect
Increased permafrost thaw due to climate change in northern high-latitudes has prompted concern over impacts on soil and stream biogeochemistry that affect the fate of dissolved organic carbon (DOC). Few studies to-date have examined the link between molecular composition and biolability of dissolve...
Published in: | Frontiers in Earth Science |
---|---|
Main Authors: | , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Frontiers Media S.A.
2019
|
Subjects: | |
Online Access: | https://doi.org/10.3389/feart.2019.00275 https://doaj.org/article/e01ed34284fa4cf5a4ff801a0ee793c2 |
id |
ftdoajarticles:oai:doaj.org/article:e01ed34284fa4cf5a4ff801a0ee793c2 |
---|---|
record_format |
openpolar |
spelling |
ftdoajarticles:oai:doaj.org/article:e01ed34284fa4cf5a4ff801a0ee793c2 2023-05-15T17:55:39+02:00 Dissolved Organic Carbon Turnover in Permafrost-Influenced Watersheds of Interior Alaska: Molecular Insights and the Priming Effect Sadie R. Textor Kimberly P. Wickland David C. Podgorski Sarah Ellen Johnston Robert G. M. Spencer 2019-10-01T00:00:00Z https://doi.org/10.3389/feart.2019.00275 https://doaj.org/article/e01ed34284fa4cf5a4ff801a0ee793c2 EN eng Frontiers Media S.A. https://www.frontiersin.org/article/10.3389/feart.2019.00275/full https://doaj.org/toc/2296-6463 2296-6463 doi:10.3389/feart.2019.00275 https://doaj.org/article/e01ed34284fa4cf5a4ff801a0ee793c2 Frontiers in Earth Science, Vol 7 (2019) dissolved organic matter dissolved organic carbon biodegradation permafrost leachates priming Science Q article 2019 ftdoajarticles https://doi.org/10.3389/feart.2019.00275 2022-12-31T01:33:07Z Increased permafrost thaw due to climate change in northern high-latitudes has prompted concern over impacts on soil and stream biogeochemistry that affect the fate of dissolved organic carbon (DOC). Few studies to-date have examined the link between molecular composition and biolability of dissolved organic matter (DOM) mobilized from different soil horizons despite its importance in understanding carbon turnover in aquatic systems. Additionally, the effect of mixed DOM sources on microbial metabolism (e.g., priming) is not well understood. No studies to-date have addressed potential priming effects in northern high-latitude or permafrost-influenced aquatic ecosystems, yet these ecosystems may be hot spots of priming where biolabile, ancient permafrost DOC mixes with relatively stable, modern stream DOC. To assess biodegradability and priming of DOC in permafrost-influenced streams, we conducted 28 day bioincubation experiments utilizing a suite of stream samples and leachates of fresh vegetation and different soil horizons, including permafrost, from Interior Alaska. The molecular composition of unamended DOM samples at initial and final time points was determined by ultrahigh resolution mass spectrometry. Initial molecular composition was correlated to DOC biodegradability, particularly the contribution of energy-rich aliphatic compounds, and stream microbial communities utilized 50–56% of aliphatics in permafrost-derived DOM within 28 days. Biodegradability of DOC followed a continuum from relatively stable stream DOC to relatively biolabile DOC derived from permafrost, active layer organic soil, and vegetation leachates. Microbial utilization of DOC was ∼3–11% for stream bioincubations and ranged from 9% (active layer mineral soil-derived) to 66% (vegetation-derived) for leachate bioincubations. To investigate the presence or absence of a priming effect, bioincubation experiments included treatments amended with 1% relative carbon concentrations of simple, biolabile organic carbon substrates (i.e., ... Article in Journal/Newspaper permafrost Alaska Directory of Open Access Journals: DOAJ Articles Frontiers in Earth Science 7 |
institution |
Open Polar |
collection |
Directory of Open Access Journals: DOAJ Articles |
op_collection_id |
ftdoajarticles |
language |
English |
topic |
dissolved organic matter dissolved organic carbon biodegradation permafrost leachates priming Science Q |
spellingShingle |
dissolved organic matter dissolved organic carbon biodegradation permafrost leachates priming Science Q Sadie R. Textor Kimberly P. Wickland David C. Podgorski Sarah Ellen Johnston Robert G. M. Spencer Dissolved Organic Carbon Turnover in Permafrost-Influenced Watersheds of Interior Alaska: Molecular Insights and the Priming Effect |
topic_facet |
dissolved organic matter dissolved organic carbon biodegradation permafrost leachates priming Science Q |
description |
Increased permafrost thaw due to climate change in northern high-latitudes has prompted concern over impacts on soil and stream biogeochemistry that affect the fate of dissolved organic carbon (DOC). Few studies to-date have examined the link between molecular composition and biolability of dissolved organic matter (DOM) mobilized from different soil horizons despite its importance in understanding carbon turnover in aquatic systems. Additionally, the effect of mixed DOM sources on microbial metabolism (e.g., priming) is not well understood. No studies to-date have addressed potential priming effects in northern high-latitude or permafrost-influenced aquatic ecosystems, yet these ecosystems may be hot spots of priming where biolabile, ancient permafrost DOC mixes with relatively stable, modern stream DOC. To assess biodegradability and priming of DOC in permafrost-influenced streams, we conducted 28 day bioincubation experiments utilizing a suite of stream samples and leachates of fresh vegetation and different soil horizons, including permafrost, from Interior Alaska. The molecular composition of unamended DOM samples at initial and final time points was determined by ultrahigh resolution mass spectrometry. Initial molecular composition was correlated to DOC biodegradability, particularly the contribution of energy-rich aliphatic compounds, and stream microbial communities utilized 50–56% of aliphatics in permafrost-derived DOM within 28 days. Biodegradability of DOC followed a continuum from relatively stable stream DOC to relatively biolabile DOC derived from permafrost, active layer organic soil, and vegetation leachates. Microbial utilization of DOC was ∼3–11% for stream bioincubations and ranged from 9% (active layer mineral soil-derived) to 66% (vegetation-derived) for leachate bioincubations. To investigate the presence or absence of a priming effect, bioincubation experiments included treatments amended with 1% relative carbon concentrations of simple, biolabile organic carbon substrates (i.e., ... |
format |
Article in Journal/Newspaper |
author |
Sadie R. Textor Kimberly P. Wickland David C. Podgorski Sarah Ellen Johnston Robert G. M. Spencer |
author_facet |
Sadie R. Textor Kimberly P. Wickland David C. Podgorski Sarah Ellen Johnston Robert G. M. Spencer |
author_sort |
Sadie R. Textor |
title |
Dissolved Organic Carbon Turnover in Permafrost-Influenced Watersheds of Interior Alaska: Molecular Insights and the Priming Effect |
title_short |
Dissolved Organic Carbon Turnover in Permafrost-Influenced Watersheds of Interior Alaska: Molecular Insights and the Priming Effect |
title_full |
Dissolved Organic Carbon Turnover in Permafrost-Influenced Watersheds of Interior Alaska: Molecular Insights and the Priming Effect |
title_fullStr |
Dissolved Organic Carbon Turnover in Permafrost-Influenced Watersheds of Interior Alaska: Molecular Insights and the Priming Effect |
title_full_unstemmed |
Dissolved Organic Carbon Turnover in Permafrost-Influenced Watersheds of Interior Alaska: Molecular Insights and the Priming Effect |
title_sort |
dissolved organic carbon turnover in permafrost-influenced watersheds of interior alaska: molecular insights and the priming effect |
publisher |
Frontiers Media S.A. |
publishDate |
2019 |
url |
https://doi.org/10.3389/feart.2019.00275 https://doaj.org/article/e01ed34284fa4cf5a4ff801a0ee793c2 |
genre |
permafrost Alaska |
genre_facet |
permafrost Alaska |
op_source |
Frontiers in Earth Science, Vol 7 (2019) |
op_relation |
https://www.frontiersin.org/article/10.3389/feart.2019.00275/full https://doaj.org/toc/2296-6463 2296-6463 doi:10.3389/feart.2019.00275 https://doaj.org/article/e01ed34284fa4cf5a4ff801a0ee793c2 |
op_doi |
https://doi.org/10.3389/feart.2019.00275 |
container_title |
Frontiers in Earth Science |
container_volume |
7 |
_version_ |
1766163614117396480 |