On the relationship between total ozone and atmospheric dynamics and chemistry at mid-latitudes – Part 1: Statistical models and spatial fingerprints of atmospheric dynamics and chemistry
We use statistical models for mean and extreme values of total column ozone to analyze "fingerprints" of atmospheric dynamics and chemistry on long-term ozone changes at northern and southern mid-latitudes on grid cell basis. At each grid cell, the r -largest order statistics method is use...
Published in: | Atmospheric Chemistry and Physics |
---|---|
Main Authors: | , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Copernicus Publications
2013
|
Subjects: | |
Online Access: | https://doi.org/10.5194/acp-13-147-2013 https://doaj.org/article/dee1ee7183a44c83b824de1ff7125127 |
id |
ftdoajarticles:oai:doaj.org/article:dee1ee7183a44c83b824de1ff7125127 |
---|---|
record_format |
openpolar |
spelling |
ftdoajarticles:oai:doaj.org/article:dee1ee7183a44c83b824de1ff7125127 2023-05-15T13:59:11+02:00 On the relationship between total ozone and atmospheric dynamics and chemistry at mid-latitudes – Part 1: Statistical models and spatial fingerprints of atmospheric dynamics and chemistry L. Frossard H. E. Rieder M. Ribatet J. Staehelin J. A. Maeder S. Di Rocco A. C. Davison T. Peter 2013-01-01T00:00:00Z https://doi.org/10.5194/acp-13-147-2013 https://doaj.org/article/dee1ee7183a44c83b824de1ff7125127 EN eng Copernicus Publications http://www.atmos-chem-phys.net/13/147/2013/acp-13-147-2013.pdf https://doaj.org/toc/1680-7316 https://doaj.org/toc/1680-7324 doi:10.5194/acp-13-147-2013 1680-7316 1680-7324 https://doaj.org/article/dee1ee7183a44c83b824de1ff7125127 Atmospheric Chemistry and Physics, Vol 13, Iss 1, Pp 147-164 (2013) Physics QC1-999 Chemistry QD1-999 article 2013 ftdoajarticles https://doi.org/10.5194/acp-13-147-2013 2022-12-31T03:01:54Z We use statistical models for mean and extreme values of total column ozone to analyze "fingerprints" of atmospheric dynamics and chemistry on long-term ozone changes at northern and southern mid-latitudes on grid cell basis. At each grid cell, the r -largest order statistics method is used for the analysis of extreme events in low and high total ozone (termed ELOs and EHOs, respectively), and an autoregressive moving average (ARMA) model is used for the corresponding mean value analysis. In order to describe the dynamical and chemical state of the atmosphere, the statistical models include important atmospheric covariates: the solar cycle, the Quasi-Biennial Oscillation (QBO), ozone depleting substances (ODS) in terms of equivalent effective stratospheric chlorine (EESC), the North Atlantic Oscillation (NAO), the Antarctic Oscillation (AAO), the El Niño/Southern Oscillation (ENSO), and aerosol load after the volcanic eruptions of El Chichón and Mt. Pinatubo. The influence of the individual covariates on mean and extreme levels in total column ozone is derived on a grid cell basis. The results show that "fingerprints", i.e., significant influence, of dynamical and chemical features are captured in both the "bulk" and the tails of the statistical distribution of ozone, respectively described by mean values and EHOs/ELOs. While results for the solar cycle, QBO, and EESC are in good agreement with findings of earlier studies, unprecedented spatial fingerprints are retrieved for the dynamical covariates. Column ozone is enhanced over Labrador/Greenland, the North Atlantic sector and over the Norwegian Sea, but is reduced over Europe, Russia and the Eastern United States during the positive NAO phase, and vice-versa during the negative phase. The NAO's southern counterpart, the AAO, strongly influences column ozone at lower southern mid-latitudes, including the southern parts of South America and the Antarctic Peninsula, and the central southern mid-latitudes. Results for both NAO and AAO confirm the importance of ... Article in Journal/Newspaper Antarc* Antarctic Antarctic Peninsula Greenland North Atlantic North Atlantic oscillation Norwegian Sea Directory of Open Access Journals: DOAJ Articles Antarctic Antarctic Peninsula Greenland Norwegian Sea The Antarctic Atmospheric Chemistry and Physics 13 1 147 164 |
institution |
Open Polar |
collection |
Directory of Open Access Journals: DOAJ Articles |
op_collection_id |
ftdoajarticles |
language |
English |
topic |
Physics QC1-999 Chemistry QD1-999 |
spellingShingle |
Physics QC1-999 Chemistry QD1-999 L. Frossard H. E. Rieder M. Ribatet J. Staehelin J. A. Maeder S. Di Rocco A. C. Davison T. Peter On the relationship between total ozone and atmospheric dynamics and chemistry at mid-latitudes – Part 1: Statistical models and spatial fingerprints of atmospheric dynamics and chemistry |
topic_facet |
Physics QC1-999 Chemistry QD1-999 |
description |
We use statistical models for mean and extreme values of total column ozone to analyze "fingerprints" of atmospheric dynamics and chemistry on long-term ozone changes at northern and southern mid-latitudes on grid cell basis. At each grid cell, the r -largest order statistics method is used for the analysis of extreme events in low and high total ozone (termed ELOs and EHOs, respectively), and an autoregressive moving average (ARMA) model is used for the corresponding mean value analysis. In order to describe the dynamical and chemical state of the atmosphere, the statistical models include important atmospheric covariates: the solar cycle, the Quasi-Biennial Oscillation (QBO), ozone depleting substances (ODS) in terms of equivalent effective stratospheric chlorine (EESC), the North Atlantic Oscillation (NAO), the Antarctic Oscillation (AAO), the El Niño/Southern Oscillation (ENSO), and aerosol load after the volcanic eruptions of El Chichón and Mt. Pinatubo. The influence of the individual covariates on mean and extreme levels in total column ozone is derived on a grid cell basis. The results show that "fingerprints", i.e., significant influence, of dynamical and chemical features are captured in both the "bulk" and the tails of the statistical distribution of ozone, respectively described by mean values and EHOs/ELOs. While results for the solar cycle, QBO, and EESC are in good agreement with findings of earlier studies, unprecedented spatial fingerprints are retrieved for the dynamical covariates. Column ozone is enhanced over Labrador/Greenland, the North Atlantic sector and over the Norwegian Sea, but is reduced over Europe, Russia and the Eastern United States during the positive NAO phase, and vice-versa during the negative phase. The NAO's southern counterpart, the AAO, strongly influences column ozone at lower southern mid-latitudes, including the southern parts of South America and the Antarctic Peninsula, and the central southern mid-latitudes. Results for both NAO and AAO confirm the importance of ... |
format |
Article in Journal/Newspaper |
author |
L. Frossard H. E. Rieder M. Ribatet J. Staehelin J. A. Maeder S. Di Rocco A. C. Davison T. Peter |
author_facet |
L. Frossard H. E. Rieder M. Ribatet J. Staehelin J. A. Maeder S. Di Rocco A. C. Davison T. Peter |
author_sort |
L. Frossard |
title |
On the relationship between total ozone and atmospheric dynamics and chemistry at mid-latitudes – Part 1: Statistical models and spatial fingerprints of atmospheric dynamics and chemistry |
title_short |
On the relationship between total ozone and atmospheric dynamics and chemistry at mid-latitudes – Part 1: Statistical models and spatial fingerprints of atmospheric dynamics and chemistry |
title_full |
On the relationship between total ozone and atmospheric dynamics and chemistry at mid-latitudes – Part 1: Statistical models and spatial fingerprints of atmospheric dynamics and chemistry |
title_fullStr |
On the relationship between total ozone and atmospheric dynamics and chemistry at mid-latitudes – Part 1: Statistical models and spatial fingerprints of atmospheric dynamics and chemistry |
title_full_unstemmed |
On the relationship between total ozone and atmospheric dynamics and chemistry at mid-latitudes – Part 1: Statistical models and spatial fingerprints of atmospheric dynamics and chemistry |
title_sort |
on the relationship between total ozone and atmospheric dynamics and chemistry at mid-latitudes – part 1: statistical models and spatial fingerprints of atmospheric dynamics and chemistry |
publisher |
Copernicus Publications |
publishDate |
2013 |
url |
https://doi.org/10.5194/acp-13-147-2013 https://doaj.org/article/dee1ee7183a44c83b824de1ff7125127 |
geographic |
Antarctic Antarctic Peninsula Greenland Norwegian Sea The Antarctic |
geographic_facet |
Antarctic Antarctic Peninsula Greenland Norwegian Sea The Antarctic |
genre |
Antarc* Antarctic Antarctic Peninsula Greenland North Atlantic North Atlantic oscillation Norwegian Sea |
genre_facet |
Antarc* Antarctic Antarctic Peninsula Greenland North Atlantic North Atlantic oscillation Norwegian Sea |
op_source |
Atmospheric Chemistry and Physics, Vol 13, Iss 1, Pp 147-164 (2013) |
op_relation |
http://www.atmos-chem-phys.net/13/147/2013/acp-13-147-2013.pdf https://doaj.org/toc/1680-7316 https://doaj.org/toc/1680-7324 doi:10.5194/acp-13-147-2013 1680-7316 1680-7324 https://doaj.org/article/dee1ee7183a44c83b824de1ff7125127 |
op_doi |
https://doi.org/10.5194/acp-13-147-2013 |
container_title |
Atmospheric Chemistry and Physics |
container_volume |
13 |
container_issue |
1 |
container_start_page |
147 |
op_container_end_page |
164 |
_version_ |
1766267663118499840 |