Patterns in Benthic Microbial Community Structure Across Environmental Gradients in the Beaufort Sea Shelf and Slope
The paradigm of tight pelagic-benthic coupling in the Arctic suggests that current and future fluctuations in sea ice, primary production, and riverine input resulting from global climate change will have major impacts on benthic ecosystems. To understand how these changes will affect benthic ecosys...
Published in: | Frontiers in Microbiology |
---|---|
Main Authors: | , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Frontiers Media S.A.
2021
|
Subjects: | |
Online Access: | https://doi.org/10.3389/fmicb.2021.581124 https://doaj.org/article/dce41565774f4eae9363a2830591f210 |
id |
ftdoajarticles:oai:doaj.org/article:dce41565774f4eae9363a2830591f210 |
---|---|
record_format |
openpolar |
spelling |
ftdoajarticles:oai:doaj.org/article:dce41565774f4eae9363a2830591f210 2023-05-15T14:56:50+02:00 Patterns in Benthic Microbial Community Structure Across Environmental Gradients in the Beaufort Sea Shelf and Slope Alexis M. Walker Mary Beth Leigh Sarah L. Mincks 2021-01-01T00:00:00Z https://doi.org/10.3389/fmicb.2021.581124 https://doaj.org/article/dce41565774f4eae9363a2830591f210 EN eng Frontiers Media S.A. https://www.frontiersin.org/articles/10.3389/fmicb.2021.581124/full https://doaj.org/toc/1664-302X 1664-302X doi:10.3389/fmicb.2021.581124 https://doaj.org/article/dce41565774f4eae9363a2830591f210 Frontiers in Microbiology, Vol 12 (2021) bacteria archaea marine sediment arctic microbial ecology methane Microbiology QR1-502 article 2021 ftdoajarticles https://doi.org/10.3389/fmicb.2021.581124 2022-12-31T06:43:50Z The paradigm of tight pelagic-benthic coupling in the Arctic suggests that current and future fluctuations in sea ice, primary production, and riverine input resulting from global climate change will have major impacts on benthic ecosystems. To understand how these changes will affect benthic ecosystem function, we must characterize diversity, spatial distribution, and community composition for all faunal components. Bacteria and archaea link the biotic and abiotic realms, playing important roles in organic matter (OM) decomposition, biogeochemical cycling, and contaminant degradation, yet sediment microbial communities have rarely been examined in the North American Arctic. Shifts in microbial community structure and composition occur with shifts in OM inputs and contaminant exposure, with implications for shifts in ecological function. Furthermore, the characterization of benthic microbial communities provides a foundation from which to build focused experimental research. We assessed diversity and community structure of benthic prokaryotes in the upper 1 cm of sediments in the southern Beaufort Sea (United States and Canada), and investigated environmental correlates of prokaryotic community structure over a broad spatial scale (spanning 1,229 km) at depths ranging from 17 to 1,200 m. Based on hierarchical clustering, we identified four prokaryotic assemblages from the 85 samples analyzed. Two were largely delineated by the markedly different environmental conditions in shallow shelf vs. upper continental slope sediments. A third assemblage was mainly comprised of operational taxonomic units (OTUs) shared between the shallow shelf and upper slope assemblages. The fourth assemblage corresponded to sediments receiving heavier OM loading, likely resulting in a shallower anoxic layer. These sites may also harbor microbial mats and/or methane seeps. Substructure within these assemblages generally reflected turnover along a longitudinal gradient, which may be related to the quantity and composition of OM deposited ... Article in Journal/Newspaper Arctic Beaufort Sea Climate change Sea ice Directory of Open Access Journals: DOAJ Articles Arctic Canada Frontiers in Microbiology 12 |
institution |
Open Polar |
collection |
Directory of Open Access Journals: DOAJ Articles |
op_collection_id |
ftdoajarticles |
language |
English |
topic |
bacteria archaea marine sediment arctic microbial ecology methane Microbiology QR1-502 |
spellingShingle |
bacteria archaea marine sediment arctic microbial ecology methane Microbiology QR1-502 Alexis M. Walker Mary Beth Leigh Sarah L. Mincks Patterns in Benthic Microbial Community Structure Across Environmental Gradients in the Beaufort Sea Shelf and Slope |
topic_facet |
bacteria archaea marine sediment arctic microbial ecology methane Microbiology QR1-502 |
description |
The paradigm of tight pelagic-benthic coupling in the Arctic suggests that current and future fluctuations in sea ice, primary production, and riverine input resulting from global climate change will have major impacts on benthic ecosystems. To understand how these changes will affect benthic ecosystem function, we must characterize diversity, spatial distribution, and community composition for all faunal components. Bacteria and archaea link the biotic and abiotic realms, playing important roles in organic matter (OM) decomposition, biogeochemical cycling, and contaminant degradation, yet sediment microbial communities have rarely been examined in the North American Arctic. Shifts in microbial community structure and composition occur with shifts in OM inputs and contaminant exposure, with implications for shifts in ecological function. Furthermore, the characterization of benthic microbial communities provides a foundation from which to build focused experimental research. We assessed diversity and community structure of benthic prokaryotes in the upper 1 cm of sediments in the southern Beaufort Sea (United States and Canada), and investigated environmental correlates of prokaryotic community structure over a broad spatial scale (spanning 1,229 km) at depths ranging from 17 to 1,200 m. Based on hierarchical clustering, we identified four prokaryotic assemblages from the 85 samples analyzed. Two were largely delineated by the markedly different environmental conditions in shallow shelf vs. upper continental slope sediments. A third assemblage was mainly comprised of operational taxonomic units (OTUs) shared between the shallow shelf and upper slope assemblages. The fourth assemblage corresponded to sediments receiving heavier OM loading, likely resulting in a shallower anoxic layer. These sites may also harbor microbial mats and/or methane seeps. Substructure within these assemblages generally reflected turnover along a longitudinal gradient, which may be related to the quantity and composition of OM deposited ... |
format |
Article in Journal/Newspaper |
author |
Alexis M. Walker Mary Beth Leigh Sarah L. Mincks |
author_facet |
Alexis M. Walker Mary Beth Leigh Sarah L. Mincks |
author_sort |
Alexis M. Walker |
title |
Patterns in Benthic Microbial Community Structure Across Environmental Gradients in the Beaufort Sea Shelf and Slope |
title_short |
Patterns in Benthic Microbial Community Structure Across Environmental Gradients in the Beaufort Sea Shelf and Slope |
title_full |
Patterns in Benthic Microbial Community Structure Across Environmental Gradients in the Beaufort Sea Shelf and Slope |
title_fullStr |
Patterns in Benthic Microbial Community Structure Across Environmental Gradients in the Beaufort Sea Shelf and Slope |
title_full_unstemmed |
Patterns in Benthic Microbial Community Structure Across Environmental Gradients in the Beaufort Sea Shelf and Slope |
title_sort |
patterns in benthic microbial community structure across environmental gradients in the beaufort sea shelf and slope |
publisher |
Frontiers Media S.A. |
publishDate |
2021 |
url |
https://doi.org/10.3389/fmicb.2021.581124 https://doaj.org/article/dce41565774f4eae9363a2830591f210 |
geographic |
Arctic Canada |
geographic_facet |
Arctic Canada |
genre |
Arctic Beaufort Sea Climate change Sea ice |
genre_facet |
Arctic Beaufort Sea Climate change Sea ice |
op_source |
Frontiers in Microbiology, Vol 12 (2021) |
op_relation |
https://www.frontiersin.org/articles/10.3389/fmicb.2021.581124/full https://doaj.org/toc/1664-302X 1664-302X doi:10.3389/fmicb.2021.581124 https://doaj.org/article/dce41565774f4eae9363a2830591f210 |
op_doi |
https://doi.org/10.3389/fmicb.2021.581124 |
container_title |
Frontiers in Microbiology |
container_volume |
12 |
_version_ |
1766328897083801600 |