The ‘excess gas’ method for laboratory formation of methane hydrate-bearing sand: geotechnical application

Abstract Over recent years, there has been a growing interest in producing methane gas from hydrate-bearing sands (MHBS) located below the permafrost in arctic regions and offshore within continental margins. Geotechnical stability of production wellbores is one of the significant challenges during...

Full description

Bibliographic Details
Published in:Scientific Reports
Main Authors: Lior Rake, Shmulik Pinkert
Format: Article in Journal/Newspaper
Language:English
Published: Nature Portfolio 2021
Subjects:
R
Q
Online Access:https://doi.org/10.1038/s41598-021-00777-7
https://doaj.org/article/dabcc21a35f040758786532e3973e8e9
id ftdoajarticles:oai:doaj.org/article:dabcc21a35f040758786532e3973e8e9
record_format openpolar
spelling ftdoajarticles:oai:doaj.org/article:dabcc21a35f040758786532e3973e8e9 2023-05-15T15:13:45+02:00 The ‘excess gas’ method for laboratory formation of methane hydrate-bearing sand: geotechnical application Lior Rake Shmulik Pinkert 2021-11-01T00:00:00Z https://doi.org/10.1038/s41598-021-00777-7 https://doaj.org/article/dabcc21a35f040758786532e3973e8e9 EN eng Nature Portfolio https://doi.org/10.1038/s41598-021-00777-7 https://doaj.org/toc/2045-2322 doi:10.1038/s41598-021-00777-7 2045-2322 https://doaj.org/article/dabcc21a35f040758786532e3973e8e9 Scientific Reports, Vol 11, Iss 1, Pp 1-14 (2021) Medicine R Science Q article 2021 ftdoajarticles https://doi.org/10.1038/s41598-021-00777-7 2022-12-31T11:29:03Z Abstract Over recent years, there has been a growing interest in producing methane gas from hydrate-bearing sands (MHBS) located below the permafrost in arctic regions and offshore within continental margins. Geotechnical stability of production wellbores is one of the significant challenges during the gas extraction process. The vast majority of geotechnical investigations of MHBS have been conducted on laboratory-formed samples due to the complex procedure of undisturbed sample extraction. One of the most commonly used hydrate laboratory-formation methods is the excess-gas method. This work investigates fundamental aspects in the excess-gas formation of MHBS that are affecting the geotechnical interpretation and modeling. The work finds that (1) the measured temperature in the experimental system may be quite different from the in-sample temperature, and can reach 4 $$^\circ$$ ∘ C difference during thermodynamic processes. This potential difference must be considered in investigation of hydrate formation or dissociation, (2) various calculation approaches may yield different hydrate saturation values of up to tens of percentages difference in high hydrate saturations. The calculation formulas are specified together with the fundamental difference between them, (3) the water mixture method during the sample assembling is critical for homogeneous MHBS laboratory formation, in which a maximum initial water content threshold of 9.1 to 1.3 % are obtained for a minimal fraction size of 0.01 to 0.8 mm, respectively, (4) the hydrate formation duration may influence the MHBS properties, and should be rigorously estimated according to the real-time gas consumption convergence. The outcomes of this work may contribute to the integration of data sets derived from various experiments for the study of MHBS mechanical behavior. Article in Journal/Newspaper Arctic Methane hydrate permafrost Directory of Open Access Journals: DOAJ Articles Arctic Scientific Reports 11 1
institution Open Polar
collection Directory of Open Access Journals: DOAJ Articles
op_collection_id ftdoajarticles
language English
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Lior Rake
Shmulik Pinkert
The ‘excess gas’ method for laboratory formation of methane hydrate-bearing sand: geotechnical application
topic_facet Medicine
R
Science
Q
description Abstract Over recent years, there has been a growing interest in producing methane gas from hydrate-bearing sands (MHBS) located below the permafrost in arctic regions and offshore within continental margins. Geotechnical stability of production wellbores is one of the significant challenges during the gas extraction process. The vast majority of geotechnical investigations of MHBS have been conducted on laboratory-formed samples due to the complex procedure of undisturbed sample extraction. One of the most commonly used hydrate laboratory-formation methods is the excess-gas method. This work investigates fundamental aspects in the excess-gas formation of MHBS that are affecting the geotechnical interpretation and modeling. The work finds that (1) the measured temperature in the experimental system may be quite different from the in-sample temperature, and can reach 4 $$^\circ$$ ∘ C difference during thermodynamic processes. This potential difference must be considered in investigation of hydrate formation or dissociation, (2) various calculation approaches may yield different hydrate saturation values of up to tens of percentages difference in high hydrate saturations. The calculation formulas are specified together with the fundamental difference between them, (3) the water mixture method during the sample assembling is critical for homogeneous MHBS laboratory formation, in which a maximum initial water content threshold of 9.1 to 1.3 % are obtained for a minimal fraction size of 0.01 to 0.8 mm, respectively, (4) the hydrate formation duration may influence the MHBS properties, and should be rigorously estimated according to the real-time gas consumption convergence. The outcomes of this work may contribute to the integration of data sets derived from various experiments for the study of MHBS mechanical behavior.
format Article in Journal/Newspaper
author Lior Rake
Shmulik Pinkert
author_facet Lior Rake
Shmulik Pinkert
author_sort Lior Rake
title The ‘excess gas’ method for laboratory formation of methane hydrate-bearing sand: geotechnical application
title_short The ‘excess gas’ method for laboratory formation of methane hydrate-bearing sand: geotechnical application
title_full The ‘excess gas’ method for laboratory formation of methane hydrate-bearing sand: geotechnical application
title_fullStr The ‘excess gas’ method for laboratory formation of methane hydrate-bearing sand: geotechnical application
title_full_unstemmed The ‘excess gas’ method for laboratory formation of methane hydrate-bearing sand: geotechnical application
title_sort ‘excess gas’ method for laboratory formation of methane hydrate-bearing sand: geotechnical application
publisher Nature Portfolio
publishDate 2021
url https://doi.org/10.1038/s41598-021-00777-7
https://doaj.org/article/dabcc21a35f040758786532e3973e8e9
geographic Arctic
geographic_facet Arctic
genre Arctic
Methane hydrate
permafrost
genre_facet Arctic
Methane hydrate
permafrost
op_source Scientific Reports, Vol 11, Iss 1, Pp 1-14 (2021)
op_relation https://doi.org/10.1038/s41598-021-00777-7
https://doaj.org/toc/2045-2322
doi:10.1038/s41598-021-00777-7
2045-2322
https://doaj.org/article/dabcc21a35f040758786532e3973e8e9
op_doi https://doi.org/10.1038/s41598-021-00777-7
container_title Scientific Reports
container_volume 11
container_issue 1
_version_ 1766344284219375616