Airborne observations of the surface cloud radiative effect during different seasons over sea ice and open ocean in the Fram Strait

This study analyses the cloud radiative effect (CRE) obtained from near-surface observations of three airborne campaigns in the Arctic north-west of Svalbard: Airborne measurements of radiative and turbulent FLUXes of energy and momentum in the Arctic boundary layer (AFLUX, March/April 2019), Arctic...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: S. Becker, A. Ehrlich, M. Schäfer, M. Wendisch
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2023
Subjects:
Online Access:https://doi.org/10.5194/acp-23-7015-2023
https://doaj.org/article/da24aefad92247898f7511aa888f377e
id ftdoajarticles:oai:doaj.org/article:da24aefad92247898f7511aa888f377e
record_format openpolar
spelling ftdoajarticles:oai:doaj.org/article:da24aefad92247898f7511aa888f377e 2023-07-16T03:51:23+02:00 Airborne observations of the surface cloud radiative effect during different seasons over sea ice and open ocean in the Fram Strait S. Becker A. Ehrlich M. Schäfer M. Wendisch 2023-06-01T00:00:00Z https://doi.org/10.5194/acp-23-7015-2023 https://doaj.org/article/da24aefad92247898f7511aa888f377e EN eng Copernicus Publications https://acp.copernicus.org/articles/23/7015/2023/acp-23-7015-2023.pdf https://doaj.org/toc/1680-7316 https://doaj.org/toc/1680-7324 doi:10.5194/acp-23-7015-2023 1680-7316 1680-7324 https://doaj.org/article/da24aefad92247898f7511aa888f377e Atmospheric Chemistry and Physics, Vol 23, Pp 7015-7031 (2023) Physics QC1-999 Chemistry QD1-999 article 2023 ftdoajarticles https://doi.org/10.5194/acp-23-7015-2023 2023-06-25T00:33:58Z This study analyses the cloud radiative effect (CRE) obtained from near-surface observations of three airborne campaigns in the Arctic north-west of Svalbard: Airborne measurements of radiative and turbulent FLUXes of energy and momentum in the Arctic boundary layer (AFLUX, March/April 2019), Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD, May/June 2017), and Multidisciplinary drifting Observatory for the Study of Arctic Climate – Airborne observations in the Central Arctic (MOSAiC-ACA, August/September 2020). The surface CRE quantifies the potential of clouds to modify the radiative energy budget at the surface and is calculated by combining broadband radiation measurements during low-level flight sections in mostly cloudy conditions with radiative transfer simulations of cloud-free conditions. The significance of surface albedo changes due to the presence of clouds is demonstrated, and this effect is considered in the cloud-free simulations. The observations are discussed with respect to differences of the CRE between sea ice and open-ocean surfaces and between the seasonally different campaigns. The results indicate that the CRE depends on cloud, illumination, surface, and thermodynamic properties. The solar and thermal-infrared (TIR) components of the CRE, CRE sol and CRE TIR , are analysed separately, as well as combined for the study of the total CRE ( CRE tot ). The inter-campaign differences of CRE sol are dominated by the seasonal cycle of the solar zenith angle, with the strongest cooling effect in summer. The lower surface albedo causes a stronger solar cooling effect over open ocean than over sea ice, which amounts to − 259 W m −2 ( − 108 W m −2 ) and − 65 W m −2 ( − 17 W m −2 ), respectively, during summer (spring). Independent of campaign and surface type, CRE TIR is only weakly variable and shows values around 75 W m −2 . In total, clouds show a negative CRE tot over open ocean during all campaigns. In contrast, over sea ice, the positive CRE tot suggests a warming ... Article in Journal/Newspaper albedo Arctic Fram Strait Sea ice Svalbard Directory of Open Access Journals: DOAJ Articles Arctic Svalbard Atmospheric Chemistry and Physics 23 12 7015 7031
institution Open Polar
collection Directory of Open Access Journals: DOAJ Articles
op_collection_id ftdoajarticles
language English
topic Physics
QC1-999
Chemistry
QD1-999
spellingShingle Physics
QC1-999
Chemistry
QD1-999
S. Becker
A. Ehrlich
M. Schäfer
M. Wendisch
Airborne observations of the surface cloud radiative effect during different seasons over sea ice and open ocean in the Fram Strait
topic_facet Physics
QC1-999
Chemistry
QD1-999
description This study analyses the cloud radiative effect (CRE) obtained from near-surface observations of three airborne campaigns in the Arctic north-west of Svalbard: Airborne measurements of radiative and turbulent FLUXes of energy and momentum in the Arctic boundary layer (AFLUX, March/April 2019), Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD, May/June 2017), and Multidisciplinary drifting Observatory for the Study of Arctic Climate – Airborne observations in the Central Arctic (MOSAiC-ACA, August/September 2020). The surface CRE quantifies the potential of clouds to modify the radiative energy budget at the surface and is calculated by combining broadband radiation measurements during low-level flight sections in mostly cloudy conditions with radiative transfer simulations of cloud-free conditions. The significance of surface albedo changes due to the presence of clouds is demonstrated, and this effect is considered in the cloud-free simulations. The observations are discussed with respect to differences of the CRE between sea ice and open-ocean surfaces and between the seasonally different campaigns. The results indicate that the CRE depends on cloud, illumination, surface, and thermodynamic properties. The solar and thermal-infrared (TIR) components of the CRE, CRE sol and CRE TIR , are analysed separately, as well as combined for the study of the total CRE ( CRE tot ). The inter-campaign differences of CRE sol are dominated by the seasonal cycle of the solar zenith angle, with the strongest cooling effect in summer. The lower surface albedo causes a stronger solar cooling effect over open ocean than over sea ice, which amounts to − 259 W m −2 ( − 108 W m −2 ) and − 65 W m −2 ( − 17 W m −2 ), respectively, during summer (spring). Independent of campaign and surface type, CRE TIR is only weakly variable and shows values around 75 W m −2 . In total, clouds show a negative CRE tot over open ocean during all campaigns. In contrast, over sea ice, the positive CRE tot suggests a warming ...
format Article in Journal/Newspaper
author S. Becker
A. Ehrlich
M. Schäfer
M. Wendisch
author_facet S. Becker
A. Ehrlich
M. Schäfer
M. Wendisch
author_sort S. Becker
title Airborne observations of the surface cloud radiative effect during different seasons over sea ice and open ocean in the Fram Strait
title_short Airborne observations of the surface cloud radiative effect during different seasons over sea ice and open ocean in the Fram Strait
title_full Airborne observations of the surface cloud radiative effect during different seasons over sea ice and open ocean in the Fram Strait
title_fullStr Airborne observations of the surface cloud radiative effect during different seasons over sea ice and open ocean in the Fram Strait
title_full_unstemmed Airborne observations of the surface cloud radiative effect during different seasons over sea ice and open ocean in the Fram Strait
title_sort airborne observations of the surface cloud radiative effect during different seasons over sea ice and open ocean in the fram strait
publisher Copernicus Publications
publishDate 2023
url https://doi.org/10.5194/acp-23-7015-2023
https://doaj.org/article/da24aefad92247898f7511aa888f377e
geographic Arctic
Svalbard
geographic_facet Arctic
Svalbard
genre albedo
Arctic
Fram Strait
Sea ice
Svalbard
genre_facet albedo
Arctic
Fram Strait
Sea ice
Svalbard
op_source Atmospheric Chemistry and Physics, Vol 23, Pp 7015-7031 (2023)
op_relation https://acp.copernicus.org/articles/23/7015/2023/acp-23-7015-2023.pdf
https://doaj.org/toc/1680-7316
https://doaj.org/toc/1680-7324
doi:10.5194/acp-23-7015-2023
1680-7316
1680-7324
https://doaj.org/article/da24aefad92247898f7511aa888f377e
op_doi https://doi.org/10.5194/acp-23-7015-2023
container_title Atmospheric Chemistry and Physics
container_volume 23
container_issue 12
container_start_page 7015
op_container_end_page 7031
_version_ 1771551327189467136