Isolation and characterization of fast‐growing green snow bacteria from coastal East Antarctica

Abstract Snow microorganisms play a significant role in climate change and affecting the snow melting rate in the Arctic and Antarctic regions. While research on algae inhabiting green and red snow has been performed extensively, bacteria dwelling in this biotope have been studied to a much lesser e...

Full description

Bibliographic Details
Published in:MicrobiologyOpen
Main Authors: Margarita Smirnova, Uladzislau Miamin, Achim Kohler, Leonid Valentovich, Artur Akhremchuk, Anastasiya Sidarenka, Andrey Dolgikh, Volha Shapaval
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 2021
Subjects:
Online Access:https://doi.org/10.1002/mbo3.1152
https://doaj.org/article/d98f3370788d40699e346b74e7a7fc7f
Description
Summary:Abstract Snow microorganisms play a significant role in climate change and affecting the snow melting rate in the Arctic and Antarctic regions. While research on algae inhabiting green and red snow has been performed extensively, bacteria dwelling in this biotope have been studied to a much lesser extent. In this study, we performed 16S rRNA gene amplicon sequencing of two green snow samples collected from the coastal area of the eastern part of Antarctica and conducted genotypic and phenotypic profiling of 45 fast‐growing bacteria isolated from these samples. 16S rRNA gene amplicon sequencing of two green snow samples showed that bacteria inhabiting these samples are mostly represented by families Burkholderiaceae (46.31%), Flavobacteriaceae (22.98%), and Pseudomonadaceae (17.66%). Identification of 45 fast‐growing bacteria isolated from green snow was performed using 16S rRNA gene sequencing. We demonstrated that they belong to the phyla Actinobacteria and Proteobacteria, and are represented by the genera Arthrobacter, Cryobacterium, Leifsonia, Salinibacterium, Paeniglutamicibacter, Rhodococcus, Polaromonas, Pseudomonas, and Psychrobacter. Nearly all bacterial isolates exhibited various growth temperatures from 4°C to 25°C, and some isolates were characterized by a high level of enzymatic activity. Phenotyping using Fourier transform infrared (FTIR) spectroscopy revealed a possible accumulation of intracellular polymer polyhydroxyalkanoates (PHA) or lipids in some isolates. The bacteria showed different lipids/PHA and protein profiles. It was shown that lipid/PHA and protein spectral regions are the most discriminative for differentiating the isolates.