Modeling the annual cycle of daily Antarctic sea ice extent
The total Antarctic sea ice extent (SIE) experiences a distinct annual cycle, peaking in September and reaching its minimum in February. In this paper we propose a mathematical and statistical decomposition of this temporal variation in SIE. Each component is interpretable and, when combined, gives...
Published in: | The Cryosphere |
---|---|
Main Authors: | , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Copernicus Publications
2020
|
Subjects: | |
Online Access: | https://doi.org/10.5194/tc-14-2159-2020 https://doaj.org/article/d91ba5ac8d834505b45dac6fd9e622d2 |
id |
ftdoajarticles:oai:doaj.org/article:d91ba5ac8d834505b45dac6fd9e622d2 |
---|---|
record_format |
openpolar |
spelling |
ftdoajarticles:oai:doaj.org/article:d91ba5ac8d834505b45dac6fd9e622d2 2023-05-15T14:04:09+02:00 Modeling the annual cycle of daily Antarctic sea ice extent M. S. Handcock M. N. Raphael 2020-07-01T00:00:00Z https://doi.org/10.5194/tc-14-2159-2020 https://doaj.org/article/d91ba5ac8d834505b45dac6fd9e622d2 EN eng Copernicus Publications https://tc.copernicus.org/articles/14/2159/2020/tc-14-2159-2020.pdf https://doaj.org/toc/1994-0416 https://doaj.org/toc/1994-0424 doi:10.5194/tc-14-2159-2020 1994-0416 1994-0424 https://doaj.org/article/d91ba5ac8d834505b45dac6fd9e622d2 The Cryosphere, Vol 14, Pp 2159-2172 (2020) Environmental sciences GE1-350 Geology QE1-996.5 article 2020 ftdoajarticles https://doi.org/10.5194/tc-14-2159-2020 2022-12-31T16:01:12Z The total Antarctic sea ice extent (SIE) experiences a distinct annual cycle, peaking in September and reaching its minimum in February. In this paper we propose a mathematical and statistical decomposition of this temporal variation in SIE. Each component is interpretable and, when combined, gives a complete picture of the variation in the sea ice. We consider timescales varying from the instantaneous and not previously defined to the multi-decadal curvilinear trend, the longest. Because our representation is daily, these timescales of variability give precise information about the timing and rates of advance and retreat of the ice and may be used to diagnose physical contributors to variability in the sea ice. We define a number of annual cycles each capturing different components of variation, especially the yearly amplitude and phase that are major contributors to SIE variation. Using daily sea ice concentration data, we show that our proposed invariant annual cycle explains 29 % more of the variation in daily SIE than the traditional method. The proposed annual cycle that incorporates amplitude and phase variation explains 77 % more variation than the traditional method. The variation in phase explains more of the variability in SIE than the amplitude. Using our methodology, we show that the anomalous decay of sea ice in 2016 was associated largely with a change of phase rather than amplitude. We show that the long term trend in Antarctic sea ice extent is strongly curvilinear and the reported positive linear trend is small and dependent strongly on a positive trend that began around 2011 and continued until 2016. Article in Journal/Newspaper Antarc* Antarctic Sea ice The Cryosphere Directory of Open Access Journals: DOAJ Articles Antarctic The Cryosphere 14 7 2159 2172 |
institution |
Open Polar |
collection |
Directory of Open Access Journals: DOAJ Articles |
op_collection_id |
ftdoajarticles |
language |
English |
topic |
Environmental sciences GE1-350 Geology QE1-996.5 |
spellingShingle |
Environmental sciences GE1-350 Geology QE1-996.5 M. S. Handcock M. N. Raphael Modeling the annual cycle of daily Antarctic sea ice extent |
topic_facet |
Environmental sciences GE1-350 Geology QE1-996.5 |
description |
The total Antarctic sea ice extent (SIE) experiences a distinct annual cycle, peaking in September and reaching its minimum in February. In this paper we propose a mathematical and statistical decomposition of this temporal variation in SIE. Each component is interpretable and, when combined, gives a complete picture of the variation in the sea ice. We consider timescales varying from the instantaneous and not previously defined to the multi-decadal curvilinear trend, the longest. Because our representation is daily, these timescales of variability give precise information about the timing and rates of advance and retreat of the ice and may be used to diagnose physical contributors to variability in the sea ice. We define a number of annual cycles each capturing different components of variation, especially the yearly amplitude and phase that are major contributors to SIE variation. Using daily sea ice concentration data, we show that our proposed invariant annual cycle explains 29 % more of the variation in daily SIE than the traditional method. The proposed annual cycle that incorporates amplitude and phase variation explains 77 % more variation than the traditional method. The variation in phase explains more of the variability in SIE than the amplitude. Using our methodology, we show that the anomalous decay of sea ice in 2016 was associated largely with a change of phase rather than amplitude. We show that the long term trend in Antarctic sea ice extent is strongly curvilinear and the reported positive linear trend is small and dependent strongly on a positive trend that began around 2011 and continued until 2016. |
format |
Article in Journal/Newspaper |
author |
M. S. Handcock M. N. Raphael |
author_facet |
M. S. Handcock M. N. Raphael |
author_sort |
M. S. Handcock |
title |
Modeling the annual cycle of daily Antarctic sea ice extent |
title_short |
Modeling the annual cycle of daily Antarctic sea ice extent |
title_full |
Modeling the annual cycle of daily Antarctic sea ice extent |
title_fullStr |
Modeling the annual cycle of daily Antarctic sea ice extent |
title_full_unstemmed |
Modeling the annual cycle of daily Antarctic sea ice extent |
title_sort |
modeling the annual cycle of daily antarctic sea ice extent |
publisher |
Copernicus Publications |
publishDate |
2020 |
url |
https://doi.org/10.5194/tc-14-2159-2020 https://doaj.org/article/d91ba5ac8d834505b45dac6fd9e622d2 |
geographic |
Antarctic |
geographic_facet |
Antarctic |
genre |
Antarc* Antarctic Sea ice The Cryosphere |
genre_facet |
Antarc* Antarctic Sea ice The Cryosphere |
op_source |
The Cryosphere, Vol 14, Pp 2159-2172 (2020) |
op_relation |
https://tc.copernicus.org/articles/14/2159/2020/tc-14-2159-2020.pdf https://doaj.org/toc/1994-0416 https://doaj.org/toc/1994-0424 doi:10.5194/tc-14-2159-2020 1994-0416 1994-0424 https://doaj.org/article/d91ba5ac8d834505b45dac6fd9e622d2 |
op_doi |
https://doi.org/10.5194/tc-14-2159-2020 |
container_title |
The Cryosphere |
container_volume |
14 |
container_issue |
7 |
container_start_page |
2159 |
op_container_end_page |
2172 |
_version_ |
1766275172523835392 |