An assessment of the carbon balance of Arctic tundra: comparisons among observations, process models, and atmospheric inversions

Although Arctic tundra has been estimated to cover only 8% of the global land surface, the large and potentially labile carbon pools currently stored in tundra soils have the potential for large emissions of carbon (C) under a warming climate. These emissions as radiatively active greenhouse gases i...

Full description

Bibliographic Details
Published in:Biogeosciences
Main Authors: A. D. McGuire, T. R. Christensen, D. Hayes, A. Heroult, E. Euskirchen, J. S. Kimball, C. Koven, P. Lafleur, P. A. Miller, W. Oechel, P. Peylin, M. Williams, Y. Yi
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2012
Subjects:
Online Access:https://doi.org/10.5194/bg-9-3185-2012
https://doaj.org/article/d7e2f14298234de583a5ed0bdceea7a7
id ftdoajarticles:oai:doaj.org/article:d7e2f14298234de583a5ed0bdceea7a7
record_format openpolar
spelling ftdoajarticles:oai:doaj.org/article:d7e2f14298234de583a5ed0bdceea7a7 2023-05-15T14:44:29+02:00 An assessment of the carbon balance of Arctic tundra: comparisons among observations, process models, and atmospheric inversions A. D. McGuire T. R. Christensen D. Hayes A. Heroult E. Euskirchen J. S. Kimball C. Koven P. Lafleur P. A. Miller W. Oechel P. Peylin M. Williams Y. Yi 2012-08-01T00:00:00Z https://doi.org/10.5194/bg-9-3185-2012 https://doaj.org/article/d7e2f14298234de583a5ed0bdceea7a7 EN eng Copernicus Publications http://www.biogeosciences.net/9/3185/2012/bg-9-3185-2012.pdf https://doaj.org/toc/1726-4170 https://doaj.org/toc/1726-4189 doi:10.5194/bg-9-3185-2012 1726-4170 1726-4189 https://doaj.org/article/d7e2f14298234de583a5ed0bdceea7a7 Biogeosciences, Vol 9, Iss 8, Pp 3185-3204 (2012) Ecology QH540-549.5 Life QH501-531 Geology QE1-996.5 article 2012 ftdoajarticles https://doi.org/10.5194/bg-9-3185-2012 2022-12-31T02:17:51Z Although Arctic tundra has been estimated to cover only 8% of the global land surface, the large and potentially labile carbon pools currently stored in tundra soils have the potential for large emissions of carbon (C) under a warming climate. These emissions as radiatively active greenhouse gases in the form of both CO 2 and CH 4 could amplify global warming. Given the potential sensitivity of these ecosystems to climate change and the expectation that the Arctic will experience appreciable warming over the next century, it is important to assess whether responses of C exchange in tundra regions are likely to enhance or mitigate warming. In this study we compared analyses of C exchange of Arctic tundra between 1990 and 2006 among observations, regional and global applications of process-based terrestrial biosphere models, and atmospheric inversion models. Syntheses of flux observations and inversion models indicate that the annual exchange of CO 2 between Arctic tundra and the atmosphere has large uncertainties that cannot be distinguished from neutral balance. The mean estimate from an ensemble of process-based model simulations suggests that Arctic tundra has acted as a sink for atmospheric CO 2 in recent decades, but based on the uncertainty estimates it cannot be determined with confidence whether these ecosystems represent a weak or a strong sink. Tundra was 0.6 °C warmer in the 2000s compared to the 1990s. The central estimates of the observations, process-based models, and inversion models each identify stronger sinks in the 2000s compared with the 1990s. Some of the process models indicate that this occurred because net primary production increased more in response to warming than heterotrophic respiration. Similarly, the observations and the applications of regional process-based models suggest that CH 4 emissions from Arctic tundra have increased from the 1990s to 2000s because of the sensitivity of CH 4 emissions to warmer temperatures. Based on our analyses of the estimates from observations, ... Article in Journal/Newspaper Arctic Climate change Global warming Tundra Directory of Open Access Journals: DOAJ Articles Arctic Biogeosciences 9 8 3185 3204
institution Open Polar
collection Directory of Open Access Journals: DOAJ Articles
op_collection_id ftdoajarticles
language English
topic Ecology
QH540-549.5
Life
QH501-531
Geology
QE1-996.5
spellingShingle Ecology
QH540-549.5
Life
QH501-531
Geology
QE1-996.5
A. D. McGuire
T. R. Christensen
D. Hayes
A. Heroult
E. Euskirchen
J. S. Kimball
C. Koven
P. Lafleur
P. A. Miller
W. Oechel
P. Peylin
M. Williams
Y. Yi
An assessment of the carbon balance of Arctic tundra: comparisons among observations, process models, and atmospheric inversions
topic_facet Ecology
QH540-549.5
Life
QH501-531
Geology
QE1-996.5
description Although Arctic tundra has been estimated to cover only 8% of the global land surface, the large and potentially labile carbon pools currently stored in tundra soils have the potential for large emissions of carbon (C) under a warming climate. These emissions as radiatively active greenhouse gases in the form of both CO 2 and CH 4 could amplify global warming. Given the potential sensitivity of these ecosystems to climate change and the expectation that the Arctic will experience appreciable warming over the next century, it is important to assess whether responses of C exchange in tundra regions are likely to enhance or mitigate warming. In this study we compared analyses of C exchange of Arctic tundra between 1990 and 2006 among observations, regional and global applications of process-based terrestrial biosphere models, and atmospheric inversion models. Syntheses of flux observations and inversion models indicate that the annual exchange of CO 2 between Arctic tundra and the atmosphere has large uncertainties that cannot be distinguished from neutral balance. The mean estimate from an ensemble of process-based model simulations suggests that Arctic tundra has acted as a sink for atmospheric CO 2 in recent decades, but based on the uncertainty estimates it cannot be determined with confidence whether these ecosystems represent a weak or a strong sink. Tundra was 0.6 °C warmer in the 2000s compared to the 1990s. The central estimates of the observations, process-based models, and inversion models each identify stronger sinks in the 2000s compared with the 1990s. Some of the process models indicate that this occurred because net primary production increased more in response to warming than heterotrophic respiration. Similarly, the observations and the applications of regional process-based models suggest that CH 4 emissions from Arctic tundra have increased from the 1990s to 2000s because of the sensitivity of CH 4 emissions to warmer temperatures. Based on our analyses of the estimates from observations, ...
format Article in Journal/Newspaper
author A. D. McGuire
T. R. Christensen
D. Hayes
A. Heroult
E. Euskirchen
J. S. Kimball
C. Koven
P. Lafleur
P. A. Miller
W. Oechel
P. Peylin
M. Williams
Y. Yi
author_facet A. D. McGuire
T. R. Christensen
D. Hayes
A. Heroult
E. Euskirchen
J. S. Kimball
C. Koven
P. Lafleur
P. A. Miller
W. Oechel
P. Peylin
M. Williams
Y. Yi
author_sort A. D. McGuire
title An assessment of the carbon balance of Arctic tundra: comparisons among observations, process models, and atmospheric inversions
title_short An assessment of the carbon balance of Arctic tundra: comparisons among observations, process models, and atmospheric inversions
title_full An assessment of the carbon balance of Arctic tundra: comparisons among observations, process models, and atmospheric inversions
title_fullStr An assessment of the carbon balance of Arctic tundra: comparisons among observations, process models, and atmospheric inversions
title_full_unstemmed An assessment of the carbon balance of Arctic tundra: comparisons among observations, process models, and atmospheric inversions
title_sort assessment of the carbon balance of arctic tundra: comparisons among observations, process models, and atmospheric inversions
publisher Copernicus Publications
publishDate 2012
url https://doi.org/10.5194/bg-9-3185-2012
https://doaj.org/article/d7e2f14298234de583a5ed0bdceea7a7
geographic Arctic
geographic_facet Arctic
genre Arctic
Climate change
Global warming
Tundra
genre_facet Arctic
Climate change
Global warming
Tundra
op_source Biogeosciences, Vol 9, Iss 8, Pp 3185-3204 (2012)
op_relation http://www.biogeosciences.net/9/3185/2012/bg-9-3185-2012.pdf
https://doaj.org/toc/1726-4170
https://doaj.org/toc/1726-4189
doi:10.5194/bg-9-3185-2012
1726-4170
1726-4189
https://doaj.org/article/d7e2f14298234de583a5ed0bdceea7a7
op_doi https://doi.org/10.5194/bg-9-3185-2012
container_title Biogeosciences
container_volume 9
container_issue 8
container_start_page 3185
op_container_end_page 3204
_version_ 1766315975049740288