Evidence of small-scale quasi-isentropic mixing in ridges of extratropical baroclinic waves

Stratosphere–troposphere exchange within extratropical cyclones provides the potential for anthropogenic and natural surface emissions to rapidly reach the stratosphere as well as for ozone from the stratosphere to penetrate deep into the troposphere, even down into the boundary layer. The efficienc...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: D. Kunkel, P. Hoor, T. Kaluza, J. Ungermann, B. Kluschat, A. Giez, H.-C. Lachnitt, M. Kaufmann, M. Riese
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2019
Subjects:
Online Access:https://doi.org/10.5194/acp-19-12607-2019
https://doaj.org/article/d620da3353674d60b0de3158915fd2c3
id ftdoajarticles:oai:doaj.org/article:d620da3353674d60b0de3158915fd2c3
record_format openpolar
spelling ftdoajarticles:oai:doaj.org/article:d620da3353674d60b0de3158915fd2c3 2023-05-15T17:36:05+02:00 Evidence of small-scale quasi-isentropic mixing in ridges of extratropical baroclinic waves D. Kunkel P. Hoor T. Kaluza J. Ungermann B. Kluschat A. Giez H.-C. Lachnitt M. Kaufmann M. Riese 2019-10-01T00:00:00Z https://doi.org/10.5194/acp-19-12607-2019 https://doaj.org/article/d620da3353674d60b0de3158915fd2c3 EN eng Copernicus Publications https://www.atmos-chem-phys.net/19/12607/2019/acp-19-12607-2019.pdf https://doaj.org/toc/1680-7316 https://doaj.org/toc/1680-7324 doi:10.5194/acp-19-12607-2019 1680-7316 1680-7324 https://doaj.org/article/d620da3353674d60b0de3158915fd2c3 Atmospheric Chemistry and Physics, Vol 19, Pp 12607-12630 (2019) Physics QC1-999 Chemistry QD1-999 article 2019 ftdoajarticles https://doi.org/10.5194/acp-19-12607-2019 2022-12-31T10:43:47Z Stratosphere–troposphere exchange within extratropical cyclones provides the potential for anthropogenic and natural surface emissions to rapidly reach the stratosphere as well as for ozone from the stratosphere to penetrate deep into the troposphere, even down into the boundary layer. The efficiency of this process directly influences the surface climate, the chemistry in the stratosphere, the chemical composition of the extratropical transition layer, and surface pollution levels. Here, we present evidence for a mixing process within extratropical cyclones which has gained only a small amount of attention so far and which fosters the transport of tropospheric air masses into the stratosphere in ridges of baroclinic waves. We analyzed airborne measurement data from a research flight of the WISE (Wave-driven ISentropic Exchange) campaign over the North Atlantic in autumn 2017, supported by forecasts from a numerical weather prediction model and trajectory calculations. Further detailed process understanding is obtained from experiments of idealized baroclinic life cycles. The major outcome of this analysis is that air masses mix in the region of the tropopause and potentially enter the stratosphere in ridges of baroclinic waves at the anticyclonic side of the jet without changing their potential temperature drastically. This quasi-isentropic exchange occurs above the outflow of warm conveyor belts, in regions which exhibit enhanced static stability in the lower stratosphere and a Kelvin–Helmholtz instability across the tropopause. The enhanced static stability is related to radiative cooling below the tropopause and the presence of small-scale waves. The Kelvin–Helmholtz instability is related to vertical shear of the horizontal wind associated with small-scale waves at the upper edge of the jet stream. The instability leads to the occurrence of turbulence and consequent mixing of trace gases in the tropopause region. While the overall relevance of this process has yet to be assessed, it has the potential to ... Article in Journal/Newspaper North Atlantic Directory of Open Access Journals: DOAJ Articles Atmospheric Chemistry and Physics 19 19 12607 12630
institution Open Polar
collection Directory of Open Access Journals: DOAJ Articles
op_collection_id ftdoajarticles
language English
topic Physics
QC1-999
Chemistry
QD1-999
spellingShingle Physics
QC1-999
Chemistry
QD1-999
D. Kunkel
P. Hoor
T. Kaluza
J. Ungermann
B. Kluschat
A. Giez
H.-C. Lachnitt
M. Kaufmann
M. Riese
Evidence of small-scale quasi-isentropic mixing in ridges of extratropical baroclinic waves
topic_facet Physics
QC1-999
Chemistry
QD1-999
description Stratosphere–troposphere exchange within extratropical cyclones provides the potential for anthropogenic and natural surface emissions to rapidly reach the stratosphere as well as for ozone from the stratosphere to penetrate deep into the troposphere, even down into the boundary layer. The efficiency of this process directly influences the surface climate, the chemistry in the stratosphere, the chemical composition of the extratropical transition layer, and surface pollution levels. Here, we present evidence for a mixing process within extratropical cyclones which has gained only a small amount of attention so far and which fosters the transport of tropospheric air masses into the stratosphere in ridges of baroclinic waves. We analyzed airborne measurement data from a research flight of the WISE (Wave-driven ISentropic Exchange) campaign over the North Atlantic in autumn 2017, supported by forecasts from a numerical weather prediction model and trajectory calculations. Further detailed process understanding is obtained from experiments of idealized baroclinic life cycles. The major outcome of this analysis is that air masses mix in the region of the tropopause and potentially enter the stratosphere in ridges of baroclinic waves at the anticyclonic side of the jet without changing their potential temperature drastically. This quasi-isentropic exchange occurs above the outflow of warm conveyor belts, in regions which exhibit enhanced static stability in the lower stratosphere and a Kelvin–Helmholtz instability across the tropopause. The enhanced static stability is related to radiative cooling below the tropopause and the presence of small-scale waves. The Kelvin–Helmholtz instability is related to vertical shear of the horizontal wind associated with small-scale waves at the upper edge of the jet stream. The instability leads to the occurrence of turbulence and consequent mixing of trace gases in the tropopause region. While the overall relevance of this process has yet to be assessed, it has the potential to ...
format Article in Journal/Newspaper
author D. Kunkel
P. Hoor
T. Kaluza
J. Ungermann
B. Kluschat
A. Giez
H.-C. Lachnitt
M. Kaufmann
M. Riese
author_facet D. Kunkel
P. Hoor
T. Kaluza
J. Ungermann
B. Kluschat
A. Giez
H.-C. Lachnitt
M. Kaufmann
M. Riese
author_sort D. Kunkel
title Evidence of small-scale quasi-isentropic mixing in ridges of extratropical baroclinic waves
title_short Evidence of small-scale quasi-isentropic mixing in ridges of extratropical baroclinic waves
title_full Evidence of small-scale quasi-isentropic mixing in ridges of extratropical baroclinic waves
title_fullStr Evidence of small-scale quasi-isentropic mixing in ridges of extratropical baroclinic waves
title_full_unstemmed Evidence of small-scale quasi-isentropic mixing in ridges of extratropical baroclinic waves
title_sort evidence of small-scale quasi-isentropic mixing in ridges of extratropical baroclinic waves
publisher Copernicus Publications
publishDate 2019
url https://doi.org/10.5194/acp-19-12607-2019
https://doaj.org/article/d620da3353674d60b0de3158915fd2c3
genre North Atlantic
genre_facet North Atlantic
op_source Atmospheric Chemistry and Physics, Vol 19, Pp 12607-12630 (2019)
op_relation https://www.atmos-chem-phys.net/19/12607/2019/acp-19-12607-2019.pdf
https://doaj.org/toc/1680-7316
https://doaj.org/toc/1680-7324
doi:10.5194/acp-19-12607-2019
1680-7316
1680-7324
https://doaj.org/article/d620da3353674d60b0de3158915fd2c3
op_doi https://doi.org/10.5194/acp-19-12607-2019
container_title Atmospheric Chemistry and Physics
container_volume 19
container_issue 19
container_start_page 12607
op_container_end_page 12630
_version_ 1766135465588555776